Ordinary Differential Equations
Generalized Riesz basis property in the analysis of neutral type systems
[Bases généralisées de Riesz pour les systèmes de type neutre]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 19-24.

On étudie une équation différentielle fonctionnelle de type neutre. Nous considérons le modèle opérationnel dans l'espace de Hilbert M 2 =C n ×L 2 (-1,0;C n ) et montrons qu'il existe dans cet espace une base de Riesz de sous-espaces de dimensions finies invariants par l'opérateur générateur infinitésimal du système. Nous donnons également un exemple précisant qu'il n'existe pas de base de Riesz de sous-espaces propres.

The functional differential equation of neutral type is studied. We consider the corresponding operator model in Hilbert space M 2 =C n ×L 2 (-1,0;C n ) and prove that there exists a sequence of invariant finite-dimensional subspaces which constitute a Riesz basis in M2. We also give an example emphasizing that the generalized eigenspaces do not form a Riesz basis.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00251-6
Rabah, Rabah 1 ; Sklyar, Grigory M. 2 ; Rezounenko, Alexander V. 3

1 IRCCyN UMR 6597, 1, rue de la Noë, PB 92101, 44321 Nantes cedex 3, France
2 Institute of Mathematics, University of Szczecin, 70-451 Szczecin, Wielkopolska 15, Poland
3 Department of Mechanics and Mathematics, Kharkov University, 4 Svobody sqr., Kharkov, 61077, Ukraine
@article{CRMATH_2003__337_1_19_0,
     author = {Rabah, Rabah and Sklyar, Grigory M. and Rezounenko, Alexander V.},
     title = {Generalized {Riesz} basis property in the analysis of neutral type systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {19--24},
     publisher = {Elsevier},
     volume = {337},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00251-6},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00251-6/}
}
TY  - JOUR
AU  - Rabah, Rabah
AU  - Sklyar, Grigory M.
AU  - Rezounenko, Alexander V.
TI  - Generalized Riesz basis property in the analysis of neutral type systems
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 19
EP  - 24
VL  - 337
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00251-6/
DO  - 10.1016/S1631-073X(03)00251-6
LA  - en
ID  - CRMATH_2003__337_1_19_0
ER  - 
%0 Journal Article
%A Rabah, Rabah
%A Sklyar, Grigory M.
%A Rezounenko, Alexander V.
%T Generalized Riesz basis property in the analysis of neutral type systems
%J Comptes Rendus. Mathématique
%D 2003
%P 19-24
%V 337
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00251-6/
%R 10.1016/S1631-073X(03)00251-6
%G en
%F CRMATH_2003__337_1_19_0
Rabah, Rabah; Sklyar, Grigory M.; Rezounenko, Alexander V. Generalized Riesz basis property in the analysis of neutral type systems. Comptes Rendus. Mathématique, Tome 337 (2003) no. 1, pp. 19-24. doi : 10.1016/S1631-073X(03)00251-6. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00251-6/

[1] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert space, Dover, New York, NY. Transl. from the Russian. Repr. of the 1961 and 1963 transl

[2] Bellman, R.; Cooke, K.L. Differential-difference equations, Math. Sci. Engrg., 6, Academic Press, New York, 1963 (XVI)

[3] Brumley, W.E. On the asymptotic behavior of solutions of differential-difference equations of neutral type, J. Differential Equations, Volume 7 (1970), pp. 175-188

[4] Curtain, R.F.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory, Texts Appl. Math., 21, Springer-Verlag, New York, 1995

[5] Dunford, N.; Schwartz, J.T. Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space, Interscience, 1963

[6] Gohberg, I.C.; Krein, M.G. Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, 18, American Mathematical Society, Providence, RI, 1969 (XV, 378 p)

[7] Hale, J.; Verduyn Lunel, S.M. Theory of Functional Differential Equations, Springer-Verlag, New York, 1993

[8] Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag, 1980

[9] Kolmanovskii, V.; Myshkis, A. Introduction to the Theory and Applications of Functional Differential Equations, Math. Appl., 463, Kluwer Academic, Dordrecht, 1999

[10] O'Connor, D.A.; Tarn, T.J. On stabilization by state feedback for neutral differential equations, IEEE Trans. Automatic Control, Volume AC-28 (1983) no. 5, pp. 615-618

[11] Pandolfi, L. Stabilization of neutral functional differential equations, J. Optimization Theory and Appl., Volume 20 (1976) no. 2, pp. 191-204

[12] R. Rabah, G.M. Sklyar, On a class of strongly stabilizable systems of neutral type, submitted

[13] Yamamoto, Y.; Ueshima, S. A new model for neutral delay-differential systems, Internat. J. Control, Volume 43 (1986) no. 2, pp. 465-471

[14] Yamamoto, Y. Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems, SIAM J. Control Optim., Volume 27 (1989) no. 1, pp. 217-234

Cité par Sources :