Nous considérons l'équation ut=Δϕ(u), où ϕ∈C3(0,∞) est croissante. Sous l'hypothèse ν·sϕ″(s)/ϕ′(s)⩾γ pour un γ>0 et ν∈{−1;1}, nous montrons l'estimation ν·du/dt⩾−u/γt. Ce résultat améliore les estimations donnée par M.G. Crandall et M. Pierre (dans J. Funct. Anal. 45 (1982) 194–212) pour cette équation.
We consider the equation ut=Δϕ(u), where ϕ∈C3(0,∞) is increasing. Under the condition ν·sϕ″(s)/ϕ′(s)⩾γ for some γ>0 and ν∈{−1;1}, we prove the estimate ν·du/dt⩾−u/γt. This result improves the estimates given by M.G. Crandall and M. Pierre (in J. Funct. Anal. 45 (1982) 194–212) for this equation.
Accepté le :
Publié le :
@article{CRMATH_2003__336_12_991_0, author = {Chasseigne, Emmanuel}, title = {Une estimation de type {Aronson{\textendash}B\'enilan}}, journal = {Comptes Rendus. Math\'ematique}, pages = {991--996}, publisher = {Elsevier}, volume = {336}, number = {12}, year = {2003}, doi = {10.1016/S1631-073X(03)00255-3}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00255-3/} }
TY - JOUR AU - Chasseigne, Emmanuel TI - Une estimation de type Aronson–Bénilan JO - Comptes Rendus. Mathématique PY - 2003 SP - 991 EP - 996 VL - 336 IS - 12 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00255-3/ DO - 10.1016/S1631-073X(03)00255-3 LA - fr ID - CRMATH_2003__336_12_991_0 ER -
Chasseigne, Emmanuel. Une estimation de type Aronson–Bénilan. Comptes Rendus. Mathématique, Tome 336 (2003) no. 12, pp. 991-996. doi : 10.1016/S1631-073X(03)00255-3. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00255-3/
[1] Régularité des solutions de l'équation des milieux poreux dans , C. R. Acad. Sci. Paris, Volume 288 (1979), pp. 103-105
[2] Regularizing effects for ut=Δϕ(u), Trans. Amer. Math. Soc., Volume 274 (1982), pp. 159-168
[3] Regularizing effects for ut=Aϕ(u) in L1, J. Funct. Anal., Volume 45 (1982), pp. 194-212
[4] Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. Transl., 23, 1968
[5] L.A. Peletier, The porous media equation, Applications of nonlinear analysis in the physical sciences, Pap. Workshop, Bielefeld 1979, 1981, pp. 229–241
[6] Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl., Volume 71 (1992), pp. 503-526
[7] An introduction to the mathematical theory of the porous medium equation, Shape Optimization and free Boundaries, Proc. NATO ASI, Sémin. Math. Supér., Montréal/Canada 1990, NATO Adv. Sci. Inst. Ser. C, 380, 1992, pp. 347-389
Cité par Sources :