Dans cette Note, nous étudions le système de Stokes avec flux de vitesse et pression imposés, dans un domaine borné, à bord régulier par morceaux.
In this Note, we study the Stokes equations with imposed velocity fluxes and pressure, in a bounded domain, with a piecewise smooth boundary.
Accepté le :
Publié le :
@article{CRMATH_2003__337_2_119_0, author = {Ciarlet, Patrick Jr.}, title = {Syst\`eme de {Stokes} avec flux de vitesse et pression impos\'es}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--124}, publisher = {Elsevier}, volume = {337}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(03)00270-X}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00270-X/} }
TY - JOUR AU - Ciarlet, Patrick Jr. TI - Système de Stokes avec flux de vitesse et pression imposés JO - Comptes Rendus. Mathématique PY - 2003 SP - 119 EP - 124 VL - 337 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00270-X/ DO - 10.1016/S1631-073X(03)00270-X LA - fr ID - CRMATH_2003__337_2_119_0 ER -
%0 Journal Article %A Ciarlet, Patrick Jr. %T Système de Stokes avec flux de vitesse et pression imposés %J Comptes Rendus. Mathématique %D 2003 %P 119-124 %V 337 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00270-X/ %R 10.1016/S1631-073X(03)00270-X %G fr %F CRMATH_2003__337_2_119_0
Ciarlet, Patrick Jr. Système de Stokes avec flux de vitesse et pression imposés. Comptes Rendus. Mathématique, Tome 337 (2003) no. 2, pp. 119-124. doi : 10.1016/S1631-073X(03)00270-X. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00270-X/
[1] A three field stabilized finite element method for the Stokes equations, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 603-608
[2] Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[3] F. Assous, P. Ciarlet, Jr., E. Garcia, Singular electromagnetic fields in a polyhedral domain, en préparation
[4] A characterization of the singular part of the solution to Maxwell's equations in a polyhedral domain, Math. Methods Appl. Sci., Volume 22 (1999), pp. 485-499
[5] Navier–Stokes equations with imposed pressure and velocity fluxes, J. Numer. Methods Fluids, Volume 20 (1995), pp. 267-287
[6] A coercive bilinear form for Maxwell's equations, J. Math. Anal. Appl., Volume 157 (1991), pp. 527-541
[7] Singularities of Maxwell interface problems, Math. Mod. Numer. Anal., Volume 33 (1999), pp. 627-649
[8] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., Volume 7 (1997), pp. 957-991
[9] Finite Element Methods for Navier–Stokes Equations, Springer Ser. Comput. Math., 1341, Springer-Verlag, Berlin, 1986
Cité par Sources :