On montre que pour tout , il existe une fonction à variation bornée telle que u=eiϕ p.p. dans et |ϕ|BV⩽2|u|BV. La constante 2 est optimale en dimension n>1.
We show that for every , there exists a bounded variation function such that u=eiϕ a.e. on and |ϕ|BV⩽2|u|BV. The constant 2 is optimal in dimension n>1.
Accepté le :
Publié le :
@article{CRMATH_2003__337_3_159_0, author = {D\'avila, Juan and Ignat, Radu}, title = {Lifting of {BV} functions with values in {\protect\emph{S}\protect\textsuperscript{1}}}, journal = {Comptes Rendus. Math\'ematique}, pages = {159--164}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(03)00314-5}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00314-5/} }
TY - JOUR AU - Dávila, Juan AU - Ignat, Radu TI - Lifting of BV functions with values in S1 JO - Comptes Rendus. Mathématique PY - 2003 SP - 159 EP - 164 VL - 337 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00314-5/ DO - 10.1016/S1631-073X(03)00314-5 LA - en ID - CRMATH_2003__337_3_159_0 ER -
%0 Journal Article %A Dávila, Juan %A Ignat, Radu %T Lifting of BV functions with values in S1 %J Comptes Rendus. Mathématique %D 2003 %P 159-164 %V 337 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00314-5/ %R 10.1016/S1631-073X(03)00314-5 %G en %F CRMATH_2003__337_3_159_0
Dávila, Juan; Ignat, Radu. Lifting of BV functions with values in S1. Comptes Rendus. Mathématique, Tome 337 (2003) no. 3, pp. 159-164. doi : 10.1016/S1631-073X(03)00314-5. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00314-5/
[1] A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 691-702
[2] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000
[3] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[4] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86
[5] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting and the Ginzburg–Landau equation, in press
[6] Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), Volume 1 (1995), pp. 197-263
[7] Une généralisation du théorème de Calderón sur l'intégrale de Cauchy, Fourier Analysis (Proc. Sem., El Escorial, 1979), Asoc. Mat. Española, Madrid, 1980, pp. 87-116
[8] Cartesian Currents in the Calculus of Variations, Vol. II, Springer, 1998
Cité par Sources :