Number Theory
On Euler products and multi-variate Gaussians
[Sur les produits eulériens et les gaussiennes multidimensionnelles]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 4, pp. 223-226.

Nous généralisons à plusieurs variables un résultat récent de A. Selberg concernant la distribution asymptotique de valeurs des produits Eulériens. Sous certaines hypothèses un développement asymptotique de type Edgeworth est établi.

In this Note, we extend a recent result of A. Selberg concerning the asymptotic value distribution of Euler products to a multi-dimensional setting. Under certain conditions, an asymptotic development of Edgeworth type is found.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00344-3
Hejhal, Dennis A. 1, 2

1 Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden
2 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
@article{CRMATH_2003__337_4_223_0,
     author = {Hejhal, Dennis A.},
     title = {On {Euler} products and multi-variate {Gaussians}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {223--226},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00344-3},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00344-3/}
}
TY  - JOUR
AU  - Hejhal, Dennis A.
TI  - On Euler products and multi-variate Gaussians
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 223
EP  - 226
VL  - 337
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00344-3/
DO  - 10.1016/S1631-073X(03)00344-3
LA  - en
ID  - CRMATH_2003__337_4_223_0
ER  - 
%0 Journal Article
%A Hejhal, Dennis A.
%T On Euler products and multi-variate Gaussians
%J Comptes Rendus. Mathématique
%D 2003
%P 223-226
%V 337
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00344-3/
%R 10.1016/S1631-073X(03)00344-3
%G en
%F CRMATH_2003__337_4_223_0
Hejhal, Dennis A. On Euler products and multi-variate Gaussians. Comptes Rendus. Mathématique, Tome 337 (2003) no. 4, pp. 223-226. doi : 10.1016/S1631-073X(03)00344-3. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00344-3/

[1] Beurling, A. On functions with a spectral gap, The Collected Works of Arne Beurling, 2, Birkhäuser, 1989, pp. 370-372

[2] Billingsley, P. Probability and Measure, Wiley, 1986

[3] Bombieri, E.; Hejhal, D. On the distribution of zeros of linear combinations of Euler products, Duke Math. J., Volume 80 (1995), pp. 821-862

[4] Cramér, H. Random Variables and Probability Distributions, Cambridge University Press, 1962

[5] Fujii, A. On the zeros of Dirichlet L-functions I, Trans. Amer. Math. Soc., Volume 196 (1974), pp. 225-235

[6] Ghosh, A. On Riemann's zeta function – sign changes of S(T) (Halberstam, H., ed.), Recent Progress in Analytic Number Theory, 1, Academic Press, 1981, pp. 25-46

[7] Hejhal, D. On a result of Selberg concerning zeros of linear combinations of L-functions, Intern. Math. Res. Notices (2000), pp. 551-577

[8] Luo, W. Zeros of Hecke L-functions associated with cusp forms, Acta Arith., Volume 71 (1995), pp. 139-158

[9] Montgomery, H.; Vaughan, R. Hilbert's inequality, J. London Math. Soc., Volume 8 (1974) no. 2, pp. 73-82 (especially p. 75)

[10] Selberg, A. Old and new conjectures and results about a class of Dirichlet series, Collected Papers, 2, Springer-Verlag, 1991, pp. 47-63

[11] Selberg, A. Contributions to the theory of the Riemann zeta function, Archiv for Math. og Naturv. B, Volume 48 (1946), pp. 89-155 (especially §§ 2, 3)

[12] Selberg, A. Lectures on sieves, Collected Papers, 2, Springer-Verlag, 1991, pp. 65-247 (especially §§20, 21)

[13] K.-M. Tsang, The distribution of the values of the Riemann zeta function, Ph.D. dissertation, Princeton University, 1984

[14] Vaaler, J. Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.), Volume 12 (1985), pp. 183-216

Cité par Sources :