@article{AIHPB_2004__40_2_207_0, author = {Sato, Ken-Iti and Watanabe, Toshiro}, title = {Moments of last exit times for {L\'evy} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {207--225}, publisher = {Elsevier}, volume = {40}, number = {2}, year = {2004}, doi = {10.1016/j.anihpb.2003.04.001}, mrnumber = {2044816}, zbl = {1053.60048}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2003.04.001/} }
TY - JOUR AU - Sato, Ken-Iti AU - Watanabe, Toshiro TI - Moments of last exit times for Lévy processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 207 EP - 225 VL - 40 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2003.04.001/ DO - 10.1016/j.anihpb.2003.04.001 LA - en ID - AIHPB_2004__40_2_207_0 ER -
%0 Journal Article %A Sato, Ken-Iti %A Watanabe, Toshiro %T Moments of last exit times for Lévy processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 207-225 %V 40 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2003.04.001/ %R 10.1016/j.anihpb.2003.04.001 %G en %F AIHPB_2004__40_2_207_0
Sato, Ken-Iti; Watanabe, Toshiro. Moments of last exit times for Lévy processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 2, pp. 207-225. doi : 10.1016/j.anihpb.2003.04.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2003.04.001/
[1] Lévy Processes, Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
,[2] Markov Processes and Potential Theory, Academic Press, New York, 1968. | MR | Zbl
, ,[3] Occupation time fluctuations in branching systems, J. Theoret. Probab. 14 (2001) 729-796. | MR | Zbl
, , ,[4] The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc. 185 (1973) 371-381. | MR | Zbl
,[5] Some asymptotic formulas involving capacity, Z. Wahrsch. Verw. Gebiete 4 (1965) 248-252. | MR | Zbl
,[6] Moments of last exit times, Mathematika 24 (1977) 266-269. | MR | Zbl
,[7] The range of random walk, in: Proc. Sixth. Berkeley Symp. Math. Statist. Probab., vol. 3, Univ. Calif. Press, Berkeley, 1972, pp. 31-50. | MR | Zbl
, ,[8] Moments for first-passage and last-exit times, the minimum, and related quantities for random walks with positive drift, Adv. Appl. Probab. 18 (1986) 865-879. | MR | Zbl
,[9] Two renewal theorems for general random walks tending to infinity, Probab. Theory Related Fields 106 (1996) 1-38. | MR | Zbl
, ,[10] Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983. | MR | Zbl
,[11] Limit theorems involving capacities, J. Math. Mech. 15 (1966) 805-832. | MR | Zbl
,[12] Limit theorems for transient Markov chains, J. Combinatorial Theory 2 (1967) 107-128. | MR | Zbl
,[13] Hitting times for transient stable processes, Pacific J. Math. 21 (1967) 161-165. | MR | Zbl
,[14] Infinitely divisible processes and their potential theory, I and II, Ann. Inst. Fourier (Grenoble) 21 (2) (1971) 157-275, and (4) 179-265. | Numdam | Zbl
, ,[15] Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970. | Zbl
,[16] Criteria of weak and strong transience for Lévy processes, in: , (Eds.), Probability Theory and Mathematical Statistics, Proc. Seventh Japan-Russia Symp., World Scientific, Singapore, 1996, pp. 438-449. | Zbl
,[17] Time evolution of Lévy processes, in: , (Eds.), Trends in Probability and Related Analysis, Proc. SAP '96, World Scientific, Singapore, 1997, pp. 35-82. | MR | Zbl
,[18] Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
,[19] Asymptotics of infinitely divisible distributions on R, Siberian Math. J. 31 (1990) 115-119. | MR | Zbl
,[20] Symmetric random walk, Trans. Amer. Math. Soc. 104 (1962) 144-153. | MR | Zbl
,[21] Electrostatic capacity, heat flow, and Brownian motion, Z. Wahrsch. Verw. Gebiete 3 (1964) 110-121. | MR | Zbl
,[22] Moments of the last exit times, Proc. Japan Acad. 43 (1967) 355-360. | MR | Zbl
,[23] Antei katei (Stable processes), in: Seminar on Probability, vol. 13, Kakuritsuron Seminar, Japan, 1962, (in Japanese).
, , ,[24] On transient Markov processes of Ornstein-Uhlenbeck type, Nagoya Math. J. 149 (1998) 19-32. | Zbl
,Cited by Sources: