The functional moderate deviations for Harris recurrent Markov chains and applications
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 1, pp. 89-124.
@article{AIHPB_2004__40_1_89_0,
     author = {Chen, Xia and Guillin, Arnaud},
     title = {The functional moderate deviations for {Harris} recurrent {Markov} chains and applications},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {89--124},
     publisher = {Elsevier},
     volume = {40},
     number = {1},
     year = {2004},
     doi = {10.1016/j.anihpb.2003.07.002},
     mrnumber = {2037475},
     zbl = {1035.60021},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2003.07.002/}
}
TY  - JOUR
AU  - Chen, Xia
AU  - Guillin, Arnaud
TI  - The functional moderate deviations for Harris recurrent Markov chains and applications
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 89
EP  - 124
VL  - 40
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2003.07.002/
DO  - 10.1016/j.anihpb.2003.07.002
LA  - en
ID  - AIHPB_2004__40_1_89_0
ER  - 
%0 Journal Article
%A Chen, Xia
%A Guillin, Arnaud
%T The functional moderate deviations for Harris recurrent Markov chains and applications
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 89-124
%V 40
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpb.2003.07.002/
%R 10.1016/j.anihpb.2003.07.002
%G en
%F AIHPB_2004__40_1_89_0
Chen, Xia; Guillin, Arnaud. The functional moderate deviations for Harris recurrent Markov chains and applications. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 1, pp. 89-124. doi : 10.1016/j.anihpb.2003.07.002. http://archive.numdam.org/articles/10.1016/j.anihpb.2003.07.002/

[1] A. De Acosta, Large deviations for vector-valued functional of Markov chain: lower bounds, Ann. Probab. 16 (1988) 925-960. | MR | Zbl

[2] A. De Acosta, Moderate deviations for empirical measures of Markov chains: lower bounds, Ann. Probab. 25 (1997) 259-284. | MR | Zbl

[3] A. De Acosta, X. Chen, Moderate deviations for empirical measures of Markov chains: upper bounds, J. Theoret. Probab. 11 (1998) 1075-1110. | MR | Zbl

[4] K.B. Athreya, P. Ney, A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc. 245 (1978) 493-501. | MR | Zbl

[5] J. Azema, M. Duflo, D. Revuz, Propriétés relatives des processus de Markov récurrents, Z. Wahr. Geb. 13 (1969) 286-314. | MR | Zbl

[6] X. Chen, Limit theorems for functionals of ergodic Markov chains with general state space, Mem. Amer. Math. Soc. 139 (664) (1999). | MR | Zbl

[7] X. Chen, The law of the iterated logarithm for functionals of Harris recurrent Markov chains: self normalization, J. Theoret. Probab. 12 (1999) 421-445. | MR | Zbl

[8] X. Chen, How often does a Harris recurrent Markov chain recur?, Ann. Probab. 27 (1999) 1324-1346. | MR | Zbl

[9] X. Chen, On the limit laws of the second order for additive functionals of Harris recurrent Markov chains, Probab. Theory Related Fields 116 (2000) 89-123. | MR | Zbl

[10] X. Chen, Moderate deviations for Markovian occupation times, Stochastic Process. Appl. 94 (2001) 51-70. | MR | Zbl

[11] K.L. Chung, G.A. Hunt, On the zeros of ∑1n±1, Ann. of Math. 50 (1949) 385-400. | Zbl

[12] E. Csáki, M. Csörgö, On additive functionals of Markov chains, J. Theoret. Probab. 8 (1995) 905-919. | MR | Zbl

[13] E. Csáki, P. Salminen, On the additive functionals of diffussion processes, Studia Sci. Math. Hungar. 31 (1996) 47-62. | MR | Zbl

[14] A. Dembo, Q. Shao, Self-normalized moderate deviations and LILs, Stochastic Process. Appl. 75 (1998) 51-65. | MR | Zbl

[15] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993. | MR | Zbl

[16] H. Djellout, A. Guillin, L. Wu, Large and moderate deviations for quadratic empirical processes, Stat. Inf. Stoch. Proc. 2 (1999) 195-225. | MR | Zbl

[17] H. Djellout, A. Guillin, Moderate deviations of Markov Chains with atom, Stochastic Process. Appl. 95 (2001) 203-217. | MR | Zbl

[18] M. Duflo, Random Iterative Models, Springer, New York, 1997. | MR | Zbl

[19] P. Erdös, S.J. Taylor, Some problems concerning the structure of random walks, Acta Math. 11 (1960) 137-162. | MR | Zbl

[20] N. Gantert, O. Zeitouni, Large and moderate deviations for the local time of a recurrent Markov chain on Z2, Ann. Inst. H. Poinc. (Probab. Statist.) 34 (1998) 687-704. | Numdam | MR | Zbl

[21] A. Guillin, Uniform moderate deviations of functional empirical processes of Markov chains, Probab. Math. Stat. 20 (2000) 237-260. | MR | Zbl

[22] N.C. Jain, W.E. Pruitt, Asymptotic behavior for the local time of a recurrent random walk, Ann. Probab. 11 (1983) 64-85. | MR | Zbl

[23] T. Jiang, M.B. Rao, X. Wang, D. Li, Laws of large numbers and moderate deviations for stochastic processes with stationary and independent increments, Stochastic Process. Appl. 44 (1993) 205-219. | MR | Zbl

[24] H. Kesten, An iterated logarithm law for local times, Duke Math. J. 32 (1965) 447-456. | MR | Zbl

[25] J.-F Le Gall, J. Rosen, The range of stable random walks, Ann. Probab. 19 (1991) 650-705. | MR | Zbl

[26] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993. | MR | Zbl

[27] M.B. Marcus, J. Rosen, Law of the iterated logarithm for the local times of symmetric Lévy processes and recurrent random walks, Ann. Probab. 22 (1994) 626-658. | MR | Zbl

[28] E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahr. Geb. 43 (1978) 309-318. | MR | Zbl

[29] E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984. | MR | Zbl

[30] S. Orey, Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand Reinhold, London, 1971. | MR | Zbl

[31] P. Révész, Random Walk in Random and Non-random Environments, World Scientific, London, 1990. | MR | Zbl

[32] V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahr. Geb. 3 (1964) 211-226. | MR | Zbl

[33] D. Revuz, Markov Chains, North-Holland, New York, 1975. | MR | Zbl

[34] A. Touati, Loi fonctionnelle du logarithme itéré pour les processus de Markov récurrents, Ann. Probab. 18 (1990) 140-159. | MR | Zbl

[35] L. Wu, Moderate deviations for random variables related to CLT, Ann. Probab. 23 (1995) 420-445. | MR | Zbl

Cité par Sources :