@article{AIHPB_2004__40_5_569_0, author = {Handa, Kenji}, title = {Reversible distributions of multi-allelic {Gillespie-Sato} diffusion models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {569--597}, publisher = {Elsevier}, volume = {40}, number = {5}, year = {2004}, doi = {10.1016/j.anihpb.2003.08.002}, zbl = {1061.60079}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2003.08.002/} }
TY - JOUR AU - Handa, Kenji TI - Reversible distributions of multi-allelic Gillespie-Sato diffusion models JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 569 EP - 597 VL - 40 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2003.08.002/ DO - 10.1016/j.anihpb.2003.08.002 LA - en ID - AIHPB_2004__40_5_569_0 ER -
%0 Journal Article %A Handa, Kenji %T Reversible distributions of multi-allelic Gillespie-Sato diffusion models %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 569-597 %V 40 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2003.08.002/ %R 10.1016/j.anihpb.2003.08.002 %G en %F AIHPB_2004__40_5_569_0
Handa, Kenji. Reversible distributions of multi-allelic Gillespie-Sato diffusion models. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 5, pp. 569-597. doi : 10.1016/j.anihpb.2003.08.002. http://archive.numdam.org/articles/10.1016/j.anihpb.2003.08.002/
[1] The Mathematical Theory of Selection, Recombination, and Mutation, Wiley, Chichester, 2000. | MR | Zbl
,[2] Distribution functions of means of a Dirichlet process, Ann. Statist. 18 (1990) 429-442, Correction , Ann. Statist. 22 (1994) 1633-1634. | MR | Zbl
, ,[3] Markov Processes: Characterization and Convergence, Wiley, New York, 1986. | MR | Zbl
, ,[4] Fleming-Viot processes in population genetics, SIAM J. Contr. Optim. 31 (1993) 345-386. | Zbl
, ,[5] Mathematical Population Genetics, Springer, Berlin, 1979. | MR | Zbl
,[6] Reversibility of solutions to martingale problems, in: Adv. Math. Suppl. Stud., vol. 9, Academic Press, Orlando, 1986, pp. 107-123. | MR | Zbl
, ,[7] Natural selection for within-generation variance in offspring number, Genetics 76 (1974) 601-606. | MR
,[8] Lectures on logarithmic Sobolev inequalities, in: Séminaire de Probabilités XXXVI, Lecture Notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 1-134. | Numdam | MR | Zbl
, ,[9] Measure Theory, Graduate Texts in Mathematics, vol. 18, Springer, New York, 1974. | Zbl
,[10] Quasi-invariant measures and their characterization by conditional probabilities, Bull. Sci. Math. 125 (2001) 583-604. | MR | Zbl
,[11] Quasi-invariance and reversibility in the Fleming-Viot process, Probab. Theory Related Fields 122 (2002) 545-566. | MR | Zbl
,[12] Simulated annealing via Sobolev inequalities, Comm. Math. Phys. 115 (1988) 553-569. | MR | Zbl
, ,[13] Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam/Tokyo, 1989. | MR | Zbl
, ,[14] Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann. 113 (1937) 766-772. | EuDML | MR | Zbl
,[15] The age distribution of Markov processes, J. Appl. Probab. 14 (1977) 492-506. | MR | Zbl
,[16] A reversibility problem for Fleming-Viot processes, Elect. Comm. Probab. 4 (1999) 71-82. | EuDML | MR | Zbl
, , ,[17] An application of time reversal of Markov processes to a problem of population genetics, Adv. Appl. Probab. 11 (1979) 457-478. | MR | Zbl
, ,[18] The adjoint Markoff process, Duke Math. J. 25 (1958) 671-690. | MR | Zbl
,[19] Convergence to a diffusion of a multi-allelic model in population genetics, Adv. Appl. Probab. 10 (1978) 538-562. | MR | Zbl
,[20] On the past history of an allele now known to have frequency p, J. Appl. Probab. 14 (1977) 439-450. | MR | Zbl
,[21] Diffusion processes in population genetics, J. Math. Kyoto Univ. 21 (1981) 133-151. | MR | Zbl
,[22] A certain class of infinite-dimensional diffusion processes arising in population genetics, J. Math. Soc. Japan 39 (1987) 17-25. | MR | Zbl
,[23] Multi-allelic Gillespie-Sato diffusion models and their extension to infinite allelic ones, in: , , (Eds.), Stochastic Methods in Biology (Nagoya, 1985), Lecture Notes in Biomath., vol. 70, Springer, Berlin, 1987, pp. 87-99. | MR | Zbl
,[24] A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes, J. Math. Kyoto Univ. 30 (1990) 245-279. | MR | Zbl
,[25] On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators, Ann. Probab. 28 (2000) 667-684. | MR | Zbl
,[26] Distinguished properties of the gamma process, and related topics, Prépublication du Laboratoire de Probabilités et Moèles Aléatoires No. 575, 2000, available at , http://xxx.lanl.gov/ps/math.PR/0005287.
, , ,[27] An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process, J. Funct. Anal. 185 (2001) 274-296. | MR | Zbl
, , ,[28] Reversibility and the age of an allele, I, Moran's infinitely many neutral alleles model, Theoret. Population Biology 10 (1976) 239-253. | MR | Zbl
,[29] Reversibility and the age of an allele, II, Two-allele models, with selection and mutation, Theoret. Population Biology 12 (1977) 179-196. | MR | Zbl
,[30] Adaptation and selection, in: , , (Eds.), Genetics, Paleontology, and Evolution, Princeton University, Princeton, NJ, 1949, pp. 365-389.
,Cité par Sources :