@article{AIHPB_2004__40_3_259_0, author = {Lacaux, C\'eline}, title = {Real harmonizable multifractional {L\'evy} motions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {259--277}, publisher = {Elsevier}, volume = {40}, number = {3}, year = {2004}, doi = {10.1016/j.anihpb.2003.11.001}, mrnumber = {2060453}, zbl = {1041.60038}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.001/} }
TY - JOUR AU - Lacaux, Céline TI - Real harmonizable multifractional Lévy motions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 259 EP - 277 VL - 40 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.001/ DO - 10.1016/j.anihpb.2003.11.001 LA - en ID - AIHPB_2004__40_3_259_0 ER -
%0 Journal Article %A Lacaux, Céline %T Real harmonizable multifractional Lévy motions %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 259-277 %V 40 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.001/ %R 10.1016/j.anihpb.2003.11.001 %G en %F AIHPB_2004__40_3_259_0
Lacaux, Céline. Real harmonizable multifractional Lévy motions. Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 3, pp. 259-277. doi : 10.1016/j.anihpb.2003.11.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2003.11.001/
[1] Regularity and identification of generalized multifractional gaussian process, Séminaire de Probabilités (2004), submitted for publication. | MR | Zbl
, , , ,[2] The generalized multifractional Brownian motion, Stat. Inference Stoch. Process. 3 (1-2) (2000) 7-18, 19th Rencontres Franco-Belges de Statisticiens, Marseille, 1998. | Zbl
, ,[3] A. Ayache, J. Lévy Véhel, Identification de l'exposant de Hölder ponctuel d'un Mouvement Brownien Multifractionnaire Généralisé, Technical Report LSP-2002-02, Laboratoire de Statistique et de Probabilités, UMR C5583, Université Paul Sabatier, 2002.
[4] Identification of the Hurst index of a step fractional Brownian motion, Stat. Inference Stoch. Process. 3 (1-2) (2000) 101-111, 19th Rencontres Franco-Belges de Statisticiens, Marseille, 1998. | Zbl
, , , ,[5] Identifying the multifractional function of a Gaussian process, Statist. Probab. Lett. 39 (1998) 337-345. | MR | Zbl
, , ,[6] Identification and properties of real harmonizable fractional Lévy motions, Bernoulli 8 (1) (2002) 97-115. | MR | Zbl
, , ,[7] Identification of filtered white noises, Stoch. Process. Appl. 75 (1998) 31-49. | MR | Zbl
, , , ,[8] Gaussian processes and pseudodifferential elliptic operators, Revista Mathematica Iberoamericana 13 (1) (1997) 19-89. | MR | Zbl
, , ,[9] Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications, Wiley, New York, 1967. | MR | Zbl
, ,[10] Quadratic variations and estimation of the local Holder index of a gaussian process, Ann. Inst. Poincaré 33 (4) (1997) 407-437. | Numdam | MR | Zbl
, ,[11] A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. PAMI 11 (1989) 674-693. | Zbl
,[12] Fractional brownian motion, fractionnal noises and applications, Siam Rev. 10 (1968) 422-437. | MR | Zbl
, ,[13] Multifractional Brownian motion: definition and preliminary results, available on , http://www-syntim.inria.fr/fractales/.
, ,[14] Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994. | MR | Zbl
, ,[15] Asymptotic Statistics, Cambridge University Press, Cambridge, 1998. | MR | Zbl
,[16] Statistical Modeling by Wavelets, Wiley, New York, 1999, a Wiley-Interscience Publication. | MR | Zbl
,Cited by Sources: