@article{AIHPB_2004__40_4_387_0, author = {Wu, Liming}, title = {Estimate of spectral gap for continuous gas}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {387--409}, publisher = {Elsevier}, volume = {40}, number = {4}, year = {2004}, doi = {10.1016/j.anihpb.2003.11.003}, mrnumber = {2070332}, zbl = {1042.60073}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.003/} }
TY - JOUR AU - Wu, Liming TI - Estimate of spectral gap for continuous gas JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 387 EP - 409 VL - 40 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.003/ DO - 10.1016/j.anihpb.2003.11.003 LA - en ID - AIHPB_2004__40_4_387_0 ER -
%0 Journal Article %A Wu, Liming %T Estimate of spectral gap for continuous gas %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 387-409 %V 40 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.003/ %R 10.1016/j.anihpb.2003.11.003 %G en %F AIHPB_2004__40_4_387_0
Wu, Liming. Estimate of spectral gap for continuous gas. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 4, pp. 387-409. doi : 10.1016/j.anihpb.2003.11.003. https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.003/
[1] On logarithmic Sobolev inequalities for continuous random walks on graphs, Probab. Theory Related Fields 116 (2000) 573-602. | MR | Zbl
, ,[2] The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal. 166 (1) (1999) 168-178. | MR | Zbl
, ,[3] Correlation, spectral gap and log-Sobolev inequalities for unbounded spin systems, in: Differential Equations and Math. Phys., Amer. Math. Soc, Providence, RI, 2000, pp. 51-66. | MR | Zbl
, ,[4] The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré PR 38 (1) (2002) 91-108. | Numdam | MR | Zbl
, , ,[5] Quasi-factorisation of entropy and log-Sobolev inequalities for Gibbs random fields, Probab. Theory Related Fields 120 (2001) 569-584. | MR | Zbl
,[6] Entropy inequalities for unbounded spin systems, Ann. Probab. 30 (4) (2000) 1959-1976. | MR | Zbl
, , ,[7] Nearest neighbor birth and death processes on the real line, Acta Mathematica 140 (1978) 103-154. | MR | Zbl
, ,[8] Foundations of Modern Probability, Springer-Verlag, 1997. | MR | Zbl
,[9] Lectures on Glauber dynamics for discrete spin models, in: Ecole d'Eté de Saint-Flour (1997), Lect. Notes in Math., vol. 1717, Springer, 1999, pp. 93-191. | MR | Zbl
,[10] Logarithmic Sobolev inequalities for unbounded spin systems revisited, in: Séminaire de Probabilités, Lect. Notes Math., vol. 1755, Springer, 2001, pp. 167-194. | Numdam | MR | Zbl
,[11] Interacting Particle Systems, Springer-Verlag, 1985. | Zbl
,[12] Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (1993) 399-433. | MR | Zbl
, ,[13] Yu. Kondratiev, E. Lytvynov, Glauber dynamics of continuous particle systems, Preprint, 2003.
[14] Strong ergodicity for Markov processes by coupling method, J. Appl. Probab. 39 (4) (2002) 839-852. | MR | Zbl
,[15] Equilibrium fluctuations for interacting Ornstein-Uhlenbeck particles, Comm. Math. Phys. (2003). | Zbl
, ,[16] Formule de dualité sur l'espace de Poisson, Ann. Inst. H. Poincaré (Prob. Stat.) 32 (4) (1996) 509-548. | Numdam | MR | Zbl
,[17] Statistical Mechanics: Rigorous Results, Benjamin, 1969. | MR | Zbl
,[18] The equivalence between the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition, Comm. Math. Phys. 144 (1992) 303-323. | Zbl
, ,[19] The logarithmic Sobolev inequality for discrete spin systems on the lattice, Comm. Math. Phys. 149 (1992) 175-193. | MR | Zbl
, ,[20] On the multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Stat. 3 (1984) 217-239. | MR | Zbl
,[21] A new modified logarithmic Sobolev inequality for Poisson point processes and several applications, Probab. Theory Related Fields 118 (2000) 427-438. | MR | Zbl
,[22] Uniqueness of Nelson's diffusions, Probab. Theory Related Fields 114 (1999) 549-585. | MR | Zbl
,[23] The equivalence of the logarithmic Sobolev inequality and a mixing condition for unbounded spin systems on the lattice, Ann. Inst. H. Poincaré (Prob. Stat.) 37 (2001) 223-243. | Numdam | MR | Zbl
,- On the analyticity of the pressure for a non-ideal gas with high density boundary conditions, Journal of Mathematical Physics, Volume 64 (2023) no. 5 | DOI:10.1063/5.0136724
- Correlation decay for hard spheres via Markov chains, The Annals of Applied Probability, Volume 32 (2022) no. 3 | DOI:10.1214/21-aap1728
- Measure concentration through non-Lipschitz observables and functional inequalities, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2425
- Entropy decay for interacting systems via the Bochner-Bakry-Émery approach, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2041
- CELL GAS MODEL OF CLASSICAL STATISTICAL SYSTEMS, Reviews in Mathematical Physics, Volume 25 (2013) no. 04, p. 1330006 | DOI:10.1142/s0129055x13300069
- Transportation inequalities: From Poisson to Gibbs measures, Bernoulli, Volume 17 (2011) no. 1 | DOI:10.3150/00-bej268
- Transportation-information inequalities for continuum Gibbs measures, Electronic Communications in Probability, Volume 16 (2011) no. none | DOI:10.1214/ecp.v16-1670
- Ergodicity of non-equilibrium Glauber dynamics in continuum, Journal of Functional Analysis, Volume 258 (2010) no. 9, p. 3097 | DOI:10.1016/j.jfa.2009.09.005
- Convex concentration inequalities for continuous gas and stochastic domination, Acta Mathematica Scientia, Volume 29 (2009) no. 5, p. 1461 | DOI:10.1016/s0252-9602(09)60118-1
- On non-equilibrium stochastic dynamics for interacting particle systems in continuum, Journal of Functional Analysis, Volume 255 (2008) no. 1, p. 200 | DOI:10.1016/j.jfa.2007.12.006
- Large deviations for Glauber dynamics of continuous gas, Science in China Series A: Mathematics, Volume 51 (2008) no. 5, p. 973 | DOI:10.1007/s11425-008-0025-z
- EQUILIBRIUM KAWASAKI DYNAMICS OF CONTINUOUS PARTICLE SYSTEMS, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 10 (2007) no. 02, p. 185 | DOI:10.1142/s0219025707002695
- Spectral Analysis of a Stochastic Ising Model in Continuum, Journal of Statistical Physics, Volume 129 (2007) no. 1, p. 121 | DOI:10.1007/s10955-007-9363-4
- Functional Inequalities for Particle Systems on Polish Spaces, Potential Analysis, Volume 24 (2006) no. 3, p. 223 | DOI:10.1007/s11118-005-0913-6
- Poincaré and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition, The Annals of Probability, Volume 34 (2006) no. 5 | DOI:10.1214/009117906000000368
- Bibliography, Functional Inequalities, Markov Semigroups and Spectral Theory (2005), p. 366 | DOI:10.1016/b978-008044942-5/50020-3
Cité par 16 documents. Sources : Crossref