Reflected planar brownian motions, intertwining relations and crossing probabilities
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 5, pp. 539-552.
@article{AIHPB_2004__40_5_539_0,
     author = {Dub\'edat, Julien},
     title = {Reflected planar brownian motions, intertwining relations and crossing probabilities},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {539--552},
     publisher = {Elsevier},
     volume = {40},
     number = {5},
     year = {2004},
     doi = {10.1016/j.anihpb.2003.11.005},
     mrnumber = {2086013},
     zbl = {1054.60085},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.005/}
}
TY  - JOUR
AU  - Dubédat, Julien
TI  - Reflected planar brownian motions, intertwining relations and crossing probabilities
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 539
EP  - 552
VL  - 40
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.005/
DO  - 10.1016/j.anihpb.2003.11.005
LA  - en
ID  - AIHPB_2004__40_5_539_0
ER  - 
%0 Journal Article
%A Dubédat, Julien
%T Reflected planar brownian motions, intertwining relations and crossing probabilities
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 539-552
%V 40
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.005/
%R 10.1016/j.anihpb.2003.11.005
%G en
%F AIHPB_2004__40_5_539_0
Dubédat, Julien. Reflected planar brownian motions, intertwining relations and crossing probabilities. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 5, pp. 539-552. doi : 10.1016/j.anihpb.2003.11.005. https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.005/

[1] Abramowitz M., Stegun I. (Eds.), Handbook of Mathematical Functions, 1965.

[2] L. Ahlfors, Complex Analysis, McGraw-Hill, 1979. | MR | Zbl

[3] H. Bateman, Higher Transcendental Functions, McGraw-Hill, 1953. | MR

[4] P. Biane, Quelques propriétés du mouvement brownien dans un cône, Stochastic Process. Appl. 53 (2) (1994) 233-240. | MR | Zbl

[5] P. Biane, Intertwining of Markov semi-groups, some examples, in: Séminaire de Probabilités, XXIX, Lecture Notes in Math., vol. 1613, Springer, Berlin, 1995, pp. 30-36. | Numdam | MR | Zbl

[6] J.L. Cardy, Critical percolation in finite geometries, J. Phys. A: Math. Gen. 25 (1992) 201-206. | MR | Zbl

[7] P. Carmona, F. Petit, M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes, Rev. Mat. Iberoamericana 14 (2) (1998) 311-367. | MR | Zbl

[8] H. Kesten, Percolation Theory for Mathematicians, Birkhaüser, 1982. | MR | Zbl

[9] G. Lawler, O. Schramm, W. Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2) (2001) 237-273. | MR | Zbl

[10] G. Lawler, O. Schramm, W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003) 917-955. | MR | Zbl

[11] J.F. Le Gall, Mouvement brownien, cônes et processus stables, Probab. Theory Related Fields 76 (1987) 587-627. | MR | Zbl

[12] J.F. Le Gall, Une approche élémentaire des théorèmes de décomposition de Williams, in: Séminaire de Probabilités, XX, 1984/1985, Lecture Notes in Math., vol. 1204, Springer, Berlin, 1986, pp. 447-464. | EuDML | Numdam | MR | Zbl

[13] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, 1991. | MR | Zbl

[14] L.C.G. Rogers, J. Pitman, Markov functions, Ann. Probab. 9 (1981) 573-582. | MR | Zbl

[15] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales. Volume One: Foundations, Wiley, 1993. | MR | Zbl

[16] S. Smirnov, Critical percolation in the plane. I. Conformal Invariance and Cardy's formula II. Continuum scaling limit, 2001, in preparation. | MR | Zbl

[17] S.R.S. Varadhan, R.J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985) 405-443. | MR | Zbl

[18] B. Virág, Brownian beads, Probab. Theory Related Fields 127 (3) (2003) 367-387. | MR | Zbl

[19] G.M.T. Watts, A crossing probability for critical percolation in two dimensions, J. Phys. A: Math. Gen. 29 (1996) 363-368. | MR | Zbl

[20] W. Werner, Critical exponents, conformal invariance and planar Brownian motion, in: Proceedings of the 3rd Europ. Congress Math., Prog. Math., vol. 202, Birkhäuser, 2001, pp. 87-103. | MR | Zbl

  • Das, Sayan; Zhu, Weitao Localization of the continuum directed random polymer, Probability Theory and Related Fields (2024) | DOI:10.1007/s00440-024-01345-6
  • Wagner, Stefan Orthogonal intertwiners for infinite particle systems in the continuum, Stochastic Processes and their Applications, Volume 168 (2024), p. 104269 | DOI:10.1016/j.spa.2023.104269
  • Denisov, Denis; Wachtel, Vitali Harmonic measure in a multidimensional gambler’s problem, The Annals of Applied Probability, Volume 34 (2024) no. 5 | DOI:10.1214/24-aap2069
  • Bras, Pierre; Kohatsu-Higa, Arturo Simulation of reflected Brownian motion on two dimensional wedges, Stochastic Processes and their Applications, Volume 156 (2023), p. 349 | DOI:10.1016/j.spa.2022.11.011
  • Franceschi, Sandro; Raschel, Kilian A dual skew symmetry for transient reflected Brownian motion in an orthant, Queueing Systems, Volume 102 (2022) no. 1-2, p. 123 | DOI:10.1007/s11134-022-09853-9
  • Franceschi, S. Green’s Functions with Oblique Neumann Boundary Conditions in the Quadrant, Journal of Theoretical Probability, Volume 34 (2021) no. 4, p. 1775 | DOI:10.1007/s10959-020-01043-8
  • Franceschi, S.; Raschel, Kilian Tutte’s invariant approach for Brownian motion reflected in the quadrant, ESAIM: Probability and Statistics, Volume 21 (2017), p. 220 | DOI:10.1051/ps/2017006
  • Kolokoltsov, Vassili N. Stochastic Monotonicity and Duality of kth Order with Application to Put-Call Symmetry of Powered Options, Journal of Applied Probability, Volume 52 (2015) no. 01, p. 82 | DOI:10.1017/s0021900200012213
  • Kolokoltsov, Vassili N. Stochastic Monotonicity and Duality ofkth Order with Application to Put-Call Symmetry of Powered Options, Journal of Applied Probability, Volume 52 (2015) no. 1, p. 82 | DOI:10.1239/jap/1429282608
  • Kolokoltsov, Vassili; Lee, Rui Xin Stochastic Duality of Markov Processes: A Study Via Generators, Stochastic Analysis and Applications, Volume 31 (2013) no. 6, p. 992 | DOI:10.1080/07362994.2013.827098
  • Bettelheim, E.; Gruzberg, I. A.; Ludwig, A. W. W. Quantum Hall transitions: An exact theory based on conformal restriction, Physical Review B, Volume 86 (2012) no. 16 | DOI:10.1103/physrevb.86.165324
  • O’Connell, Neil Directed polymers and the quantum Toda lattice, The Annals of Probability, Volume 40 (2012) no. 2 | DOI:10.1214/10-aop632
  • Biane, Philippe Entrelacements de semi-groupes provenant de paires de Gelfand, ESAIM: Probability and Statistics, Volume 15 (2011), p. S2 | DOI:10.1051/ps/2010025
  • Ichiba, Tomoyuki; Papathanakos, Vassilios; Banner, Adrian; Karatzas, Ioannis; Fernholz, Robert Hybrid Atlas models, The Annals of Applied Probability, Volume 21 (2011) no. 2 | DOI:10.1214/10-aap706
  • Sheffield, Scott; Wilson, David B. Schramm’s proof of Watts’ formula, The Annals of Probability, Volume 39 (2011) no. 5 | DOI:10.1214/11-aop652
  • KAGER, WOUTER; LEVINE, LIONEL Diamond aggregation, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 149 (2010) no. 2, p. 351 | DOI:10.1017/s030500411000006x
  • Dieker, A.B.; Moriarty, J. Reflected Brownian motion in a wedge: sum-of-exponential stationary densities, Electronic Communications in Probability, Volume 14 (2009) no. none | DOI:10.1214/ecp.v14-1437
  • Bañuelos, R.; Kulczycki, T.; Siudeja, B. Neumann Bessel Heat Kernel Monotonicity, Potential Analysis, Volume 30 (2009) no. 1, p. 65 | DOI:10.1007/s11118-008-9106-4
  • Warren, Jon Dyson's Brownian motions, intertwining and interlacing, Electronic Journal of Probability, Volume 12 (2007) no. none | DOI:10.1214/ejp.v12-406
  • Schapira, Bruno The Heckman–Opdam Markov processes, Probability Theory and Related Fields, Volume 138 (2007) no. 3-4, p. 495 | DOI:10.1007/s00440-006-0034-1
  • Kager, Wouter Reflected Brownian motion in generic triangles and wedges, Stochastic Processes and their Applications, Volume 117 (2007) no. 5, p. 539 | DOI:10.1016/j.spa.2006.10.002
  • Kager, Wouter; Nienhuis, Bernard Monte Carlo study of the hull distribution for theq= 1 Brauer model, Journal of Statistical Mechanics: Theory and Experiment, Volume 2006 (2006) no. 08, p. P08004 | DOI:10.1088/1742-5468/2006/08/p08004

Cité par 22 documents. Sources : Crossref