Limit theorems for one-dimensional transient random walks in Markov environments
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 5, pp. 635-659.
@article{AIHPB_2004__40_5_635_0,
     author = {Mayer-Wolf, Eddy and Roitershtein, Alexander and Zeitouni, Ofer},
     title = {Limit theorems for one-dimensional transient random walks in {Markov} environments},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {635--659},
     publisher = {Elsevier},
     volume = {40},
     number = {5},
     year = {2004},
     doi = {10.1016/j.anihpb.2004.01.003},
     mrnumber = {2086017},
     zbl = {1070.60024},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpb.2004.01.003/}
}
TY  - JOUR
AU  - Mayer-Wolf, Eddy
AU  - Roitershtein, Alexander
AU  - Zeitouni, Ofer
TI  - Limit theorems for one-dimensional transient random walks in Markov environments
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 635
EP  - 659
VL  - 40
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpb.2004.01.003/
DO  - 10.1016/j.anihpb.2004.01.003
LA  - en
ID  - AIHPB_2004__40_5_635_0
ER  - 
%0 Journal Article
%A Mayer-Wolf, Eddy
%A Roitershtein, Alexander
%A Zeitouni, Ofer
%T Limit theorems for one-dimensional transient random walks in Markov environments
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 635-659
%V 40
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpb.2004.01.003/
%R 10.1016/j.anihpb.2004.01.003
%G en
%F AIHPB_2004__40_5_635_0
Mayer-Wolf, Eddy; Roitershtein, Alexander; Zeitouni, Ofer. Limit theorems for one-dimensional transient random walks in Markov environments. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 5, pp. 635-659. doi : 10.1016/j.anihpb.2004.01.003. https://www.numdam.org/articles/10.1016/j.anihpb.2004.01.003/

[1] S. Alili, Asymptotic behavior for random walks in random environments, J. Appl. Probab. 36 (1999) 334-349. | MR | Zbl

[2] G. Alsmeyer, The Markov renewal theorem and related results, Markov Proc. Related Fields 3 (1997) 103-127. | MR | Zbl

[3] S. Asmussen, Applied Probability and Queues, Wiley, New York, 1987. | MR | Zbl

[4] K.B. Athreya, D. Mcdonald, P.E. Ney, Limit theorems for semi-Markov renewal theory for Markov chains, Ann. Probab. 6 (1978) 809-814. | MR | Zbl

[5] K.B. Athreya, P.E. Ney, A new approach to the limit theory of recurrent Markov chains, Trans. Amer. Math. Soc. 245 (1978) 493-501. | MR | Zbl

[6] K.B. Athreya, P.E. Ney, A renewal approach to the Perron-Frobenius theory of nonnegative kernels on general state spaces, Math. Z. 179 (1982) 507-529. | Zbl

[7] J. Bremont, On some random walks on Z in random medium, Ann. Probab. 30 (2002) 1266-1312. | MR | Zbl

[8] A.A. Chernov, Replication of a multicomponent chain by the “lightning mechanism”, Biophysics 12 (1967) 336-341.

[9] B. de Saporta, Tails of the stationary solution of the stochastic equation Yn+1=anYn+bn with Markovian coefficients, Stoch. Proc. Appl. (2004), in press. | Zbl

[10] R. Durrett, Probability: Theory and Examples, Duxbury Press, Belmont, 1996. | MR

[11] B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Indpendent Random Variables, Addison-Wesley, Reading, MA, 1962. | MR | Zbl

[12] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1991) 126-166. | MR | Zbl

[13] H. Kesten, M.V. Kozlov, F. Spitzer, A limit law for random walk in a random environment, Comp. Math. 30 (1975) 145-168. | Numdam | MR | Zbl

[14] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta. Math. 131 (1973) 208-248. | MR | Zbl

[15] H. Kesten, Renewal theory for functionals of a Markov chain with general state space, Ann. Probab. 2 (1974) 355-386. | MR | Zbl

[16] M. Kobus, Generalized Poisson distributions as limits of sums for arrays of dependent random vectors, J. Multivariate Anal. 52 (1995) 199-244. | MR | Zbl

[17] S.M. Kozlov, A random walk on the line with stochastic structure, Teoriya Veroyatnosti i Primeneniya 18 (1973) 406-408. | MR | Zbl

[18] S.A. Molchanov, Lectures on Random Media, in: Lecture Notes in Mathematics, vol. 1581, Springer, New York, 1994. | MR | Zbl

[19] E. Nummelin, General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, 1984. | MR | Zbl

[20] A. Roitershtein, One-dimensional linear recursions with Markov-dependent coefficients, 2004, in preparation.

[21] G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, 1994. | MR | Zbl

[22] V.M. Shurenkov, On the theory of Markov renewal, Theor. Probab. Appl. 29 (1984) 247-265. | MR | Zbl

[23] F. Solomon, Random walks in random environments, Ann. Probab. 3 (1975) 1-31. | MR | Zbl

[24] Z. Szewczak, On a central limit theorem for m-dependent sequences, Bull. Polish Acad. Sci. 36 (1988) 327-331. | MR | Zbl

[25] A.S. Sznitman, Topics in random walks in random environment, 2002. | Zbl

[26] C. Takacs, More randomness of environment does not always slow down a random walk, J. Theoret Probab. 14 (3) (2001) 699-715. | MR | Zbl

[27] D.E. Temkin, One-dimensional random walks in two-component chain, Soviet Math. Dokl. 13 (5) (1972) 1172-1176. | MR | Zbl

[28] O. Zeitouni, Random walks in random environment, in: XXXI Summer School in Probability, St. Flour, 2001, Lecture Notes in Math., vol. 1837, Springer, Berlin, 2004, pp. 193-312. | MR | Zbl

  • Buraczewski, Dariusz; Dyszewski, Piotr; Iksanov, Alexander; Marynych, Alexander Random walks in a strongly sparse random environment, Stochastic Processes and their Applications, Volume 130 (2020) no. 7, p. 3990 | DOI:10.1016/j.spa.2019.11.007
  • Ahn, Sung Won; Peterson, Jonathon Quenched central limit theorem rates of convergence for one-dimensional random walks in random environments, Bernoulli, Volume 25 (2019) no. 2 | DOI:10.3150/18-bej1024
  • Lübbers, Jan-Erik; Meiners, Matthias The speed of critically biased random walk in a one-dimensional percolation model, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp277
  • Dolgopyat, D; Goldsheid, I Central limit theorem for recurrent random walks on a strip with bounded potential, Nonlinearity, Volume 31 (2018) no. 7, p. 3381 | DOI:10.1088/1361-6544/aab89b
  • Roitershtein, Alexander; Zhou, Zirou Relative growth of the partial sums of certain random Fibonacci-like sequences, Journal of Difference Equations and Applications, Volume 23 (2017) no. 12, p. 1913 | DOI:10.1080/10236198.2017.1378353
  • Scheinhardt, Werner R. W.; Kroese, Dirk P. A comparison of random walks in dependent random environments, Advances in Applied Probability, Volume 48 (2016) no. 1, p. 199 | DOI:10.1017/apr.2015.13
  • Gao, Fuqing Laws of iterated logarithm for transient random walks in random environments, Frontiers of Mathematics in China, Volume 10 (2015) no. 4, p. 857 | DOI:10.1007/s11464-015-0481-z
  • Dolgopyat, D; Goldsheid, I Limit theorems for random walks on a strip in subdiffusive regimes, Nonlinearity, Volume 26 (2013) no. 6, p. 1743 | DOI:10.1088/0951-7715/26/6/1743
  • Roitershtein, Alexander; Zhong, Zheng On random coefficient INAR(1) processes, Science China Mathematics, Volume 56 (2013) no. 1, p. 177 | DOI:10.1007/s11425-012-4547-z
  • Zeitouni, Ofer Random Walks in Random Environment, Computational Complexity (2012), p. 2564 | DOI:10.1007/978-1-4614-1800-9_157
  • Hay, Diana; Rastegar, Reza; Roitershtein, Alexander Multivariate linear recursions with Markov-dependent coefficients, Journal of Multivariate Analysis, Volume 102 (2011) no. 3, p. 521 | DOI:10.1016/j.jmva.2010.10.011
  • Ghosh, Arka P.; Hay, Diana; Hirpara, Vivek; Rastegar, Reza; Roitershtein, Alexander; Schulteis, Ashley; Suh, Jiyeon Random linear recursions with dependent coefficients, Statistics Probability Letters, Volume 80 (2010) no. 21-22, p. 1597 | DOI:10.1016/j.spl.2010.06.013
  • Peterson, Jonathon; Seppäläinen, Timo Current fluctuations of a system of one-dimensional random walks in random environment, The Annals of Probability, Volume 38 (2010) no. 6 | DOI:10.1214/10-aop537
  • Zeitouni, Ofer Random Walks in Random Environment, Encyclopedia of Complexity and Systems Science (2009), p. 7520 | DOI:10.1007/978-0-387-30440-3_444
  • Goldsheid, Ilya Ya. Linear and sub-linear growth and the CLT for hitting times of a random walk in random environment on a strip, Probability Theory and Related Fields, Volume 141 (2008) no. 3-4, p. 471 | DOI:10.1007/s00440-007-0091-0
  • Roitershtein, Alexander One-dimensional linear recursions with Markov-dependent coefficients, The Annals of Applied Probability, Volume 17 (2007) no. 2 | DOI:10.1214/105051606000000844
  • Zeitouni, Ofer Random walks in random environments, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 40, p. R433 | DOI:10.1088/0305-4470/39/40/r01
  • Roitershtein, Alexander A Log-scale Limit Theorem for One-dimensional Random Walks in Random Environments, Electronic Communications in Probability, Volume 10 (2005) no. none | DOI:10.1214/ecp.v10-1164
  • Comets, Francis; Zeitouni, Ofer Gaussian fluctuations for random walks in random mixing environments, Israel Journal of Mathematics, Volume 148 (2005) no. 1, p. 87 | DOI:10.1007/bf02775433

Cité par 19 documents. Sources : Crossref