Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term
Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 1, pp. 69-105.
@article{AIHPB_2005__41_1_69_0,
     author = {Cerrai, Sandra and R\"ockner, Michael},
     title = {Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and {non-Lipschitz} reaction term},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {69--105},
     publisher = {Elsevier},
     volume = {41},
     number = {1},
     year = {2005},
     doi = {10.1016/j.anihpb.2004.03.001},
     zbl = {1066.60029},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.001/}
}
TY  - JOUR
AU  - Cerrai, Sandra
AU  - Röckner, Michael
TI  - Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2005
SP  - 69
EP  - 105
VL  - 41
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.001/
DO  - 10.1016/j.anihpb.2004.03.001
LA  - en
ID  - AIHPB_2005__41_1_69_0
ER  - 
%0 Journal Article
%A Cerrai, Sandra
%A Röckner, Michael
%T Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2005
%P 69-105
%V 41
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.001/
%R 10.1016/j.anihpb.2004.03.001
%G en
%F AIHPB_2005__41_1_69_0
Cerrai, Sandra; Röckner, Michael. Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 1, pp. 69-105. doi : 10.1016/j.anihpb.2004.03.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2004.03.001/

[1] S. Cerrai, Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach, Lecture Notes in Mathematics, vol. 1762, Springer-Verlag, Berlin, 2001. | MR | Zbl

[2] S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields 125 (2003) 271-304. | MR | Zbl

[3] S. Cerrai, M. Röckner, Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Probab. 32 (2004) 1-40. | MR | Zbl

[4] Ph. Clément, G. Sweers, Uniform anti-maximum principles, J. Differential Equations 164 (2000) 118-154. | MR | Zbl

[5] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989. | MR | Zbl

[6] I. Daw, Principe de grandes déviationes pour une mesure invariante associée à un processus de diffusion en dimension infinie, Ph.D. Thesis, University of Rouen (1998).

[7] M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I, Comm. Pure Appl. Math. 28 (1975) 1-47. | MR | Zbl

[8] W.G. Faris, G. Jona-Lasinio, Large fluctuation for a non linear heat equation with noise, J. Phys. A 15 (1982) 3025-3055. | MR | Zbl

[9] M.I. Freidlin, Random perturbations of reaction-diffusion equations: the quasi deterministic approximation, Trans. Amer. Math. Soc. 305 (1988) 665-697. | MR | Zbl

[10] M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, Berlin, 1984. | MR | Zbl

[11] S. Peszat, Large deviation estimates for stochastic evolution equations, Probab. Theory Related Fields 98 (1994) 113-136. | MR | Zbl

[12] T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, 1996. | MR | Zbl

[13] R. Sowers, Large deviations for a reaction-diffusion equation with non-Gaussian perturbation, Ann. Probab. 20 (1992) 504-537. | MR | Zbl

[14] R. Sowers, Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations, Probab. Theory Related Fields 92 (1992) 393-421. | MR | Zbl

[15] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | MR | Zbl

[16] S.R.S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math. 22 (1969) 261-286. | MR | Zbl

Cited by Sources: