@article{AIHPB_2005__41_3_409_0, author = {Diaconis, Persi}, title = {Analysis of a {Bose-Einstein} {Markov} chain}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {409--418}, publisher = {Elsevier}, volume = {41}, number = {3}, year = {2005}, doi = {10.1016/j.anihpb.2004.09.007}, zbl = {02191861}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.007/} }
TY - JOUR AU - Diaconis, Persi TI - Analysis of a Bose-Einstein Markov chain JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 409 EP - 418 VL - 41 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.007/ DO - 10.1016/j.anihpb.2004.09.007 LA - en ID - AIHPB_2005__41_3_409_0 ER -
%0 Journal Article %A Diaconis, Persi %T Analysis of a Bose-Einstein Markov chain %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 409-418 %V 41 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.007/ %R 10.1016/j.anihpb.2004.09.007 %G en %F AIHPB_2005__41_3_409_0
Diaconis, Persi. Analysis of a Bose-Einstein Markov chain. Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 3, pp. 409-418. doi : 10.1016/j.anihpb.2004.09.007. http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.007/
[1] Reversible Markov chains and random walks and graphs, http://www.stat.berkeley.edu/users/aldous, 2003.
, ,[2] J. Besag, P. Green, Spatial statistics and Bayesian computation, J. Roy. Statist. Soc. Ser. B (1993) 25-37. | MR | Zbl
[3] On the distribution of large prime divisors, Period. Math. Hungar 2 (1972) 283-289. | MR | Zbl
,[4] Torpid mixing of some Monte Carlo Markov chains in statistical physics, in: 40th Symp. Foundations of Computer Science, IEEE Comput. Soc., Los Alamaitos, CA, 1999, pp. 218-229. | MR
, , , , , , ,[5] The Permutational Approach to Dynamical Sterochemistry, McGraw-Hill, New York, 1983.
, , ,[6] Polya's theory of counting, in: Applied Combinatorial Mathematics, Wiley, New York, 1968. | Zbl
,[7] Another arc sine law, Sankhyā 43 (1981) 371-373. | MR | Zbl
, ,[8] Probabilités et Potentiel, Herman, Paris, 1975. | MR | Zbl
, ,[9] Probabilités et Potentiel : Theorie des Martingales, Herman, Paris, 1980. | MR
, ,[10] Probabilité et Potentiel : Theorie Discrete du Potentiel, Herman, Paris, 1983. | MR
, ,[11] An Introduction to Probability and its Applications, vol. 1, Wiley, New York, 1968. | MR | Zbl
,[12] Automating Polya theory: the computational complexity of the cycle index polynomial, Info and Computation 105 (1993) 268-288. | MR | Zbl
,[13] The Burnside process mixes slowly, Combinatorics, Probability, and Computing 11 (2002) 21-34. | MR | Zbl
, ,[14] On the distribution of the cycles in permutations, Dokl. Akad. Nauk SSSR 35 (1942) 229-310.
,[15] The Swendsen-Wang process does not always mix rapidly, in: Proc. 29th Acm. Symp. Th. of Comput., 1997, pp. 674-681. | MR | Zbl
, ,[16] Two conditioned limit theorems with applications, Ann. Statist. 7 (1979) 551-557. | MR | Zbl
,[17] Perfect sampling using bounding chains, Ann. Appl. Probab. 14 (2004) 734-753. | MR | Zbl
,[18] Uniform sampling modulo a group of symmetries using Markov chain simulation, in: DIMACS Series Discrete Math., vol. 10, 1993, pp. 37-47. | MR | Zbl
,[19] Computational Polya-theory in surveys in combinatorics, in: London Math. Soc. Lecture Notes, vol. 218, Cambridge University Press, Cambridge, 1995, pp. 103-108. | MR | Zbl
,[20] Finite Markov Chains, Van Nostrand, New York, 1960. | MR | Zbl
, ,[21] Applied Finite Group Actions, Springer, Berlin, 1999. | MR | Zbl
,[22] Transition probabilities for continual Young diagrams and Markov moment problems, Func. Anal. Appl. 27 (1993) 104-117. | MR | Zbl
,[23] Monte Carlo Techniques in Scientific Computing, Springer, New York, 2001. | MR
,[24] Probability and Potentials, Blaisdell, Walthan, MA, 1966. | MR | Zbl
,[25] Slice sampling (with discussion), Ann. Statist. 31 (2003) 705-767. | MR | Zbl
,[26] Combinatorial Enumeration of Groups Graphs and Chemical Compounds, Springer, New York, 1987. | MR
, ,[27] Ordered cycle lengths in random permutations, Trans. Amer. Math. Soc. 121 (1966) 340-357. | MR | Zbl
, ,[28] Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999. | MR | Zbl
,[29] The calculation of posterior distributions using data augmentation, J. Amer. Statist. Asoc. 82 (1987) 528-550. | MR | Zbl
, ,Cited by Sources: