@article{AIHPB_2006__42_2_171_0, author = {Engl\"ander, J\'anos and Winter, Anita}, title = {Law of large numbers for a class of superdiffusions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {171--185}, publisher = {Elsevier}, volume = {42}, number = {2}, year = {2006}, doi = {10.1016/j.anihpb.2005.03.004}, mrnumber = {2199796}, zbl = {1093.60058}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2005.03.004/} }
TY - JOUR AU - Engländer, János AU - Winter, Anita TI - Law of large numbers for a class of superdiffusions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 171 EP - 185 VL - 42 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2005.03.004/ DO - 10.1016/j.anihpb.2005.03.004 LA - en ID - AIHPB_2006__42_2_171_0 ER -
%0 Journal Article %A Engländer, János %A Winter, Anita %T Law of large numbers for a class of superdiffusions %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 171-185 %V 42 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2005.03.004/ %R 10.1016/j.anihpb.2005.03.004 %G en %F AIHPB_2006__42_2_171_0
Engländer, János; Winter, Anita. Law of large numbers for a class of superdiffusions. Annales de l'I.H.P. Probabilités et statistiques, Volume 42 (2006) no. 2, pp. 171-185. doi : 10.1016/j.anihpb.2005.03.004. http://archive.numdam.org/articles/10.1016/j.anihpb.2005.03.004/
[1] Large time behavior of the heat kernel: the parabolic λ-potential alternative, Comment. Math. Helv. 66 (1991) 541-556. | Zbl
, ,[2] Measure-valued Markov processes, in: (Ed.), École d'été de probabilités de Saint Flour XXI, 1991, Lecture Notes in Math., vol. 1541, Springer-Verlag, Berlin, 1993, pp. 1-260. | MR | Zbl
,[3] Particle representations for measure-valued population models, Ann. Probab. 27 (1) (1999) 166-205. | MR | Zbl
, ,[4] Branching particle systems and superprocesses, Ann. Probab. 19 (3) (1991) 1157-1194. | MR | Zbl
,[5] Diffusions, Superdiffusions and Partial Differential Equations, Amer. Math. Soc. Colloq. Publ., vol. 50, Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl
,[6] An example and a conjecture concerning scaling limits of superdiffusions, Statist. Probab. Lett. 66 (3) (2004) 363-368. | MR | Zbl
,[7] On the construction and support properties of measure-valued diffusions on with spatially dependent branching, Ann. Probab. 27 (2) (1999) 684-730. | Zbl
, ,[8] Uniqueness/nonuniqueness for positive solutions to semilinear equations of the form in , J. Differential Equations 192 (2) (2003) 396-428. | Zbl
, ,[9] A scaling limit theorem for a class of superdiffusions, Ann. Probab. 30 (2) (2002) 683-722. | MR | Zbl
, ,[10] An Introduction to Superprocesses, University Lecture Series, vol. 20, Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
,[11] Extinction versus exponential growth in a supercritical super-Wright-Fisher diffusion, Stochastic Process. Appl. 106 (1) (2003) 141-165. | MR | Zbl
, ,[12] Denumerable Markov Chains, Springer-Verlag, 1976. | MR | Zbl
, , ,[13] Some aspects of the Martin boundary of measure-valued diffusions, in: Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, Amer. Math. Soc., Providence, RI, 1994, pp. 179-186. | MR | Zbl
,[14] Large time behavior of the heat kernel, J. Functional Anal. 206 (1) (2004) 191-209. | MR | Zbl
,[15] Positive Harmonic Functions and Diffusion, Cambridge University Press, 1995. | MR | Zbl
,[16] Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions, Ann. Probab. 24 (1) (1996) 237-267. | MR | Zbl
,[17] Large time behavior of the heat kernel: on a theorem of Chavel and Karp, Proc. Amer. Math. Soc. 118 (2) (1993) 513-514. | MR | Zbl
,[18] Limit theorems for a class of branching processes, in: (Ed.), Markov Processes and Potential Theory, Wiley, New York, 1967, pp. 205-232. | Zbl
,Cited by Sources: