The compact support property for measure-valued processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 42 (2006) no. 5, pp. 535-552.
@article{AIHPB_2006__42_5_535_0,
     author = {Engl\"ander, J\'anos and Pinsky, Ross G.},
     title = {The compact support property for measure-valued processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {535--552},
     publisher = {Elsevier},
     volume = {42},
     number = {5},
     year = {2006},
     doi = {10.1016/j.anihpb.2005.07.001},
     zbl = {1104.60049},
     mrnumber = {2259973},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2005.07.001/}
}
TY  - JOUR
AU  - Engländer, János
AU  - Pinsky, Ross G.
TI  - The compact support property for measure-valued processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2006
DA  - 2006///
SP  - 535
EP  - 552
VL  - 42
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2005.07.001/
UR  - https://zbmath.org/?q=an%3A1104.60049
UR  - https://www.ams.org/mathscinet-getitem?mr=2259973
UR  - https://doi.org/10.1016/j.anihpb.2005.07.001
DO  - 10.1016/j.anihpb.2005.07.001
LA  - en
ID  - AIHPB_2006__42_5_535_0
ER  - 
%0 Journal Article
%A Engländer, János
%A Pinsky, Ross G.
%T The compact support property for measure-valued processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2006
%P 535-552
%V 42
%N 5
%I Elsevier
%U https://doi.org/10.1016/j.anihpb.2005.07.001
%R 10.1016/j.anihpb.2005.07.001
%G en
%F AIHPB_2006__42_5_535_0
Engländer, János; Pinsky, Ross G. The compact support property for measure-valued processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 42 (2006) no. 5, pp. 535-552. doi : 10.1016/j.anihpb.2005.07.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2005.07.001/

[1] P. Baras, M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal. 18 (1984) 111-149. | MR | Zbl

[2] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980) 1-6. | MR | Zbl

[3] D.A. Dawson, Measure-valued Markov processes, in: École d'Été de Probabilités de Saint-Flour XXI-1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. | Zbl

[4] D.A. Dawson, I. Iscoe, E.A. Perkins, Super-Brownian motion: path properties and hitting probabilities, Probab. Theory Related Fields 83 (1989) 135-205. | MR | Zbl

[5] R.D. Deblassie, On hitting single points by a multidimensional diffusion, Stochastics Stochastics Rep. 65 (1998) 1-11. | MR | Zbl

[6] E.B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Related Fields 89 (1991) 89-115. | MR | Zbl

[7] E.B. Dynkin, Superprocesses and partial differential equations, Ann. Probab. 21 (1993) 1185-1262. | MR | Zbl

[8] S. Dynkin, E.B. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math. 49 (1996) 125-176. | MR | Zbl

[9] J. Engländer, Criteria for the existence of positive solutions to the equation ρΔu=u 2 in R d for all d1 - a new probabilistic approach, Positivity 4 (2000) 327-337. | Zbl

[10] J. Engländer, R. Pinsky, On the construction and support properties of measure-valued diffusions on DR d with spatially dependent branching, Ann. Probab. 27 (1999) 684-730. | Zbl

[11] J. Englan̈Der, R. Pinsky, Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form u t =Lu+Vu-γu p in R n , J. Differential Equations 192 (2003) 396-428. | Zbl

[12] K. Fleischmann, A. Sturm, A super-stable motion with infinite mean branching, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 513-537. | Numdam | MR | Zbl

[13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. | MR | Zbl

[14] R. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge University Press, 1995. | MR | Zbl

[15] R. Pinsky, Positive solutions of reaction diffusion equations with super-linear absorption: universal bounds, uniqueness for the Cauchy problem, boundedness of stationary solutions, J. Differential Equations, in press. | MR | Zbl

[16] Y. Ren, Support properties of super-Brownian motions with spatially dependent branching rate, Stochastic Process. Appl. 110 (2004) 19-44. | MR | Zbl

[17] L. Veron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5 (1981) 225-242. | MR | Zbl

Cited by Sources: