@article{AIHPB_2007__43_1_15_0, author = {Morvai, Guszt\'av and Weiss, Benjamin}, title = {On estimating the memory for finitarily markovian processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {15--30}, publisher = {Elsevier}, volume = {43}, number = {1}, year = {2007}, doi = {10.1016/j.anihpb.2005.11.001}, mrnumber = {2288267}, zbl = {1106.62094}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2005.11.001/} }
TY - JOUR AU - Morvai, Gusztáv AU - Weiss, Benjamin TI - On estimating the memory for finitarily markovian processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 15 EP - 30 VL - 43 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2005.11.001/ DO - 10.1016/j.anihpb.2005.11.001 LA - en ID - AIHPB_2007__43_1_15_0 ER -
%0 Journal Article %A Morvai, Gusztáv %A Weiss, Benjamin %T On estimating the memory for finitarily markovian processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 15-30 %V 43 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2005.11.001/ %R 10.1016/j.anihpb.2005.11.001 %G en %F AIHPB_2007__43_1_15_0
Morvai, Gusztáv; Weiss, Benjamin. On estimating the memory for finitarily markovian processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 1, pp. 15-30. doi : 10.1016/j.anihpb.2005.11.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2005.11.001/
[1] D.H. Bailey, Sequential schemes for classifying and predicting ergodic processes, Ph.D. thesis, Stanford University, 1976.
[2] Variable-length Markov chains, Ann. Statist. 27 (1999) 480-513. | MR | Zbl
, ,[3] Large-scale typicality of Markov sample paths and consistency of MDL order estimators, IEEE Trans. Inform. Theory 48 (2002) 1616-1628. | MR | Zbl
,[4] The consistency of the BIC Markov order estimator, Ann. Statist. 28 (2000) 1601-1619. | MR | Zbl
, ,[5] I. Csiszár, Zs. Talata, Context tree estimation for not necessarily finite memory processes via BIC and MDL, IEEE Trans. Inform. Theory, in press. | MR
[6] A topological criterion for hypothesis testing, Ann. Statist. 22 (1994) 106-117. | MR | Zbl
, ,[7] A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996. | MR | Zbl
, , ,[8] Limits to consistent on-line forecasting for ergodic time series, IEEE Trans. Inform. Theory 44 (1998) 886-892. | MR | Zbl
, , ,[9] Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl
,[10] Finitarily deterministic generators for zero entropy systems, Israel J. Math. 79 (1992) 33-45. | MR | Zbl
, , ,[11] Guessing the output of a stationary binary time series, in: , , (Eds.), Foundations of Statistical Inference, Physika-Verlag, 2003, pp. 207-215. | MR
,[12] Nonparametric inference for ergodic, stationary time series, Ann. Statist. 24 (1996) 370-379. | MR | Zbl
, , ,[13] Forecasting for stationary binary time series, Acta Appl. Math. 79 (2003) 25-34. | MR | Zbl
, ,[14] Intermittent estimation of stationary time series, Test 13 (2004) 525-542. | MR | Zbl
, ,[15] Prediction for discrete time series, Probab. Theory Related Fields 132 (2005) 1-12. | MR | Zbl
, ,[16] Order estimation of Markov chains, IEEE Trans. Inform. Theory 51 (2005) 1496-1497. | MR
, ,[17] Limitations on intermittent forecasting, Statist. Probab. Lett. 72 (2005) 285-290. | MR | Zbl
, ,[18] On classifying processes, Bernoulli 11 (2005) 523-532. | MR | Zbl
, ,[19] Inferring the conditional mean, Theory Stochastic Process. 11 (1-2) (2005) 112-120.
, ,[20] Limits to classification and regression estimation from ergodic processes, Ann. Statist. 27 (1999) 262-273. | MR | Zbl
,[21] Guessing the next output of a stationary process, Israel J. Math. 30 (1978) 292-296. | MR | Zbl
,[22] How sampling reveals a process, Ann. Probab. 18 (1990) 905-930. | MR | Zbl
, ,[23] Prediction of random sequences and universal coding, Problems Inform. Trans. 24 (April-June 1988) 87-96. | Zbl
,[24] The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math., vol. 13, American Mathematical Society, Providence, RI, 1996. | MR | Zbl
,Cited by Sources: