@article{AIHPB_2007__43_1_77_0, author = {Liang, Zongxia}, title = {Besov regularity for the generalized local time of the indefinite {Skorohod} integral}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {77--86}, publisher = {Elsevier}, volume = {43}, number = {1}, year = {2007}, doi = {10.1016/j.anihpb.2006.01.001}, mrnumber = {2288270}, zbl = {1115.60060}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2006.01.001/} }
TY - JOUR AU - Liang, Zongxia TI - Besov regularity for the generalized local time of the indefinite Skorohod integral JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 77 EP - 86 VL - 43 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2006.01.001/ DO - 10.1016/j.anihpb.2006.01.001 LA - en ID - AIHPB_2007__43_1_77_0 ER -
%0 Journal Article %A Liang, Zongxia %T Besov regularity for the generalized local time of the indefinite Skorohod integral %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 77-86 %V 43 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2006.01.001/ %R 10.1016/j.anihpb.2006.01.001 %G en %F AIHPB_2007__43_1_77_0
Liang, Zongxia. Besov regularity for the generalized local time of the indefinite Skorohod integral. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 1, pp. 77-86. doi : 10.1016/j.anihpb.2006.01.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2006.01.001/
[1] Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times, J. Funct. Anal. 49 (1982) 198-229. | Zbl
, ,[2] Interpolation Spaces - An Introduction, Springer-Verlag, World Publishing Corp., 1976, 2003. | Zbl
, ,[3] Régularité Besov des trajectoires du processus intégral de Skorohod, Bull. Sci. Math. 123 (1999) 643-663. | MR
, ,[4] Le temps local brownien appartient p.s. l’espace de Besov , C. R. Acad. Sci. Paris Ser. I Math. 316 (1993) 843-848. | MR | Zbl
, ,[5] Quelques espaces fonctionnels associés des processus gaussiens, Studia Math. 107 (1993) 171-204. | MR | Zbl
, , ,[6] Occupation densities, Ann. Probab. 8 (1980) 1-67. | MR | Zbl
, ,[7] Occupation densities for stochastic integral processes in the second Wiener chaos, Probab. Theory Related Fields 91 (1992) 1-24. | MR | Zbl
,[8] Integration by parts on Wiener space and the existence of occupation densities, Ann. Probab. 22 (1994) 469-493. | MR | Zbl
, ,[9] Besov regularity for the indefinite Skorohod integral with respect to the fractional Brownian motion: the singular case, Stochastics Stochastics Rep. 74 (2002) 597-615. | MR | Zbl
, , ,[10] Z. Liang, Besov-regularity of local times of some semimartingales, Preprint, 2005.
[11] Stochastic Analysis, Grundlehren Math. Wiss., vol. 313, Springer-Verlag, Berlin, 1997, (xii+343 pp.). | MR | Zbl
,[12] The Malliavin Calculus and Related Topics, Probab. Appl., Springer-Verlag, New York, 1995, (xii+266 pp.). | MR | Zbl
,[13] Besov regularity of stochastic integrals with respect to the fractional Brownian motion with parameter , J. Theoret. Probab. 16 (2003) 451-470. | MR | Zbl
, ,[14] Martingale-type stochastic calculus for anticipating integral processes, Bernoulli 10 (2004) 313-325. | MR | Zbl
,[15] Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | MR | Zbl
,[16] Local times of fractional Brownian sheets, Probab. Theory Related Fields 124 (2002) 204-226. | MR | Zbl
, ,Cited by Sources: