A Liouville theorem for solutions of the Monge-Ampère equation with periodic data
Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 1, pp. 97-120.
@article{AIHPC_2004__21_1_97_0,
     author = {Caffarelli, L and Li, Yan Yan},
     title = {A {Liouville} theorem for solutions of the {Monge-Amp\`ere} equation with periodic data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {97--120},
     publisher = {Elsevier},
     volume = {21},
     number = {1},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.01.005},
     zbl = {1108.35051},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/}
}
TY  - JOUR
AU  - Caffarelli, L
AU  - Li, Yan Yan
TI  - A Liouville theorem for solutions of the Monge-Ampère equation with periodic data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 97
EP  - 120
VL  - 21
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/
DO  - 10.1016/j.anihpc.2003.01.005
LA  - en
ID  - AIHPC_2004__21_1_97_0
ER  - 
%0 Journal Article
%A Caffarelli, L
%A Li, Yan Yan
%T A Liouville theorem for solutions of the Monge-Ampère equation with periodic data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 97-120
%V 21
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/
%R 10.1016/j.anihpc.2003.01.005
%G en
%F AIHPC_2004__21_1_97_0
Caffarelli, L; Li, Yan Yan. A Liouville theorem for solutions of the Monge-Ampère equation with periodic data. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 1, pp. 97-120. doi : 10.1016/j.anihpc.2003.01.005. https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/

[1] Caffarelli L., A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. 13 (1990) 129-134. | MR | Zbl

[2] Caffarelli L., Interior W2,p estimates for solutions of the Monge-Ampère equation, Ann. of Math. 131 (1990) 135-150. | MR | Zbl

[3] Caffarelli L., Graduate Course at the Courant Institute, New York University, New York, 1995.

[4] Caffarelli L., Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000) 547-563. | MR | Zbl

[5] Caffarelli L., Cabre X., Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. | MR | Zbl

[6] Caffarelli L., Gutiérrez C., Properties of the solutions of the linearized Monge-Ampère equation, Amer. J. Math. 119 (1997) 423-465. | MR | Zbl

[7] Caffarelli L., Li Y.Y., An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. 56 (2003) 549-583. | MR | Zbl

[8] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984) 369-402. | MR | Zbl

[9] Caffarelli L., Viaclovsky J., On the regularity of solutions to Monge-Ampère equations on Hessian manifolds, Comm. Partial Differential Equations 26 (2001) 2339-2351. | MR | Zbl

[10] Calabi E., Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958). | MR | Zbl

[11] Cheng S.Y., Yau S.T., The real Monge-Ampère equation and affine flat structures, in: Proceedings of the Symposium on Differential Geometry and Differential Equations, vols. 1-3, Beijing, 1980, Science Press, Beijing, 1982, pp. 339-370. | MR | Zbl

[12] Cheng S.Y., Yau S.T., Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839-866. | MR | Zbl

[13] Chou K.-S., Wang X.-J., A variational theory of the Hessian equation, Comm. Pure Appl. Math. 54 (2001) 1029-1064. | MR | Zbl

[14] De Guzman M., Differentiation of Integrals in Rn, Lecture Notes, vol. 481, Springer-Verlag, Berlin, 1976. | Zbl

[15] Evans L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982) 333-363. | MR | Zbl

[16] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. | MR | Zbl

[17] Jörgens K., Über die Lösungen der Differentialgleichung rts2=1, Math. Ann. 127 (1954) 130-134.

[18] Krylov N.V., Boundedly inhomogeneous elliptic and parabolic equation in a domain, Izv. Akad. Nauk SSSR 47 (1983) 75-108. | MR | Zbl

[19] Krylov N.V., Safonov M.V., An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk. SSSR 245 (1979) 253-255, English translation in: , Soviet Math. Dokl. 20 (1979) 253-255. | MR | Zbl

[20] Li Y.Y., Some existence results of fully nonlinear elliptic equations of Monge-Ampère type, Comm. Pure Appl. Math. 43 (1990) 233-271. | MR | Zbl

[21] Pogorelov A.V., On the improper affine hypersurfaces, Geom. Dedicata 1 (1972) 33-46. | MR | Zbl

[22] Trudinger N., Wang X., The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000) 399-422. | MR | Zbl

  • Wang, Guotao; Zhang, Zhuobin; Ahmad, Bashir On the existence of radial solutions to a nonlinear k-Hessian system with gradient term, Nonlinear Analysis: Real World Applications, Volume 82 (2025), p. 104255 | DOI:10.1016/j.nonrwa.2024.104255
  • Guan, Tingting; Wang, Guotao; Araci, Serkan Some applications and maximum principles for multi-term time-space fractional parabolic Monge-Ampère equation, Demonstratio Mathematica, Volume 57 (2024) no. 1 | DOI:10.1515/dema-2024-0031
  • Liu, Zixiao; Bao, Jiguang Symmetry of solutions of minimal gradient graph equations on punctured space, Israel Journal of Mathematics, Volume 255 (2023) no. 1, p. 81 | DOI:10.1007/s11856-022-2405-4
  • Jian, Huaiyu; Tu, Xushan A Liouville theorem for the Neumann problem of Monge-Ampère equations, Journal of Functional Analysis, Volume 284 (2023) no. 6, p. 109817 | DOI:10.1016/j.jfa.2022.109817
  • Wang, Guotao; Zhang, Zhuobin; Masiello, Antonio New Results on the Radial Solutions to a Class of Nonlinear k‐Hessian System, Journal of Mathematics, Volume 2022 (2022) no. 1 | DOI:10.1155/2022/6681813
  • Wang, Cong; Bao, Jiguang Liouville property and existence of entire solutions of Hessian equations, Nonlinear Analysis, Volume 223 (2022), p. 113020 | DOI:10.1016/j.na.2022.113020
  • Zhou, Ziwei; Gong, Shuyu; Bao, Jiguang Ancient solutions of exterior problem of parabolic Monge–Ampère equations, Annali di Matematica Pura ed Applicata (1923 -), Volume 200 (2021) no. 4, p. 1605 | DOI:10.1007/s10231-020-01049-3
  • Liu, Zixiao; Bao, Jiguang Asymptotic expansion at infinity of solutions of Monge–Ampère type equations, Nonlinear Analysis, Volume 212 (2021), p. 112450 | DOI:10.1016/j.na.2021.112450
  • Dai, Limei The exterior Dirichlet problems of Monge–Ampère equations in dimension two, Boundary Value Problems, Volume 2020 (2020) no. 1 | DOI:10.1186/s13661-020-01476-4
  • Bao, Jiguang; Xiong, Jingang; Zhou, Ziwei Existence of entire solutions of Monge–Ampère equations with prescribed asymptotic behavior, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 6 | DOI:10.1007/s00526-019-1639-4
  • BEN BELGACEM, Fethi Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia, Volume 38 (2018) no. 4, p. 1285 | DOI:10.1016/s0252-9602(18)30814-2
  • Zhang, Wei; Bao, Jiguang A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 5, p. 1143 | DOI:10.1016/j.anihpc.2017.09.007
  • Zhang, Wei; Bao, Jiguang; Wang, Bo An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 3 | DOI:10.1007/s00526-018-1363-5
  • Li, YanYan; Lu, Siyuan Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère equation, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 6 | DOI:10.1007/s00526-018-1428-5
  • Xu, Ruiwei; Zhu, Lingyun A rigidity theorem of α α -relative parabolic hyperspheres, manuscripta mathematica, Volume 154 (2017) no. 3-4, p. 503 | DOI:10.1007/s00229-017-0918-7
  • Xu, Ruiwei; Zhu, Lingyun A Simple Proof of a Rigidity Theorem for an Affine Kähler–Ricci Flat Graph, Results in Mathematics, Volume 70 (2016) no. 1-2, p. 249 | DOI:10.1007/s00025-015-0478-7
  • Chen, Shibing; Figalli, Alessio Boundary ε-regularity in optimal transportation, Advances in Mathematics, Volume 273 (2015), p. 540 | DOI:10.1016/j.aim.2014.12.032
  • Xu, Ruiwei; Zhu, Lingyun On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space III, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 3, p. 3337 | DOI:10.1007/s00526-015-0905-3
  • De Philippis, Guido; Figalli, Alessio Partial regularity for optimal transport maps, Publications mathématiques de l'IHÉS, Volume 121 (2015) no. 1, p. 81 | DOI:10.1007/s10240-014-0064-7
  • Kokonendji, Célestin C.; Masmoudi, Afif On the Monge–Ampère equation for characterizing gamma-Gaussian model, Statistics Probability Letters, Volume 83 (2013) no. 7, p. 1692 | DOI:10.1016/j.spl.2013.03.023
  • Zhou, Bin The Bernstein theorem for a class of fourth order equations, Calculus of Variations and Partial Differential Equations, Volume 43 (2012) no. 1-2, p. 25 | DOI:10.1007/s00526-011-0401-3
  • Kokonendji, Célestin C.; Masmoudi, Afif A characterization of Poisson-Gaussian families by generalized variance, Bernoulli, Volume 12 (2006) no. 2 | DOI:10.3150/bj/1145993979

Cité par 22 documents. Sources : Crossref