@article{AIHPC_2004__21_1_97_0, author = {Caffarelli, L and Li, Yan Yan}, title = {A {Liouville} theorem for solutions of the {Monge-Amp\`ere} equation with periodic data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {97--120}, publisher = {Elsevier}, volume = {21}, number = {1}, year = {2004}, doi = {10.1016/j.anihpc.2003.01.005}, zbl = {1108.35051}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/} }
TY - JOUR AU - Caffarelli, L AU - Li, Yan Yan TI - A Liouville theorem for solutions of the Monge-Ampère equation with periodic data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 97 EP - 120 VL - 21 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/ DO - 10.1016/j.anihpc.2003.01.005 LA - en ID - AIHPC_2004__21_1_97_0 ER -
%0 Journal Article %A Caffarelli, L %A Li, Yan Yan %T A Liouville theorem for solutions of the Monge-Ampère equation with periodic data %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 97-120 %V 21 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/ %R 10.1016/j.anihpc.2003.01.005 %G en %F AIHPC_2004__21_1_97_0
Caffarelli, L; Li, Yan Yan. A Liouville theorem for solutions of the Monge-Ampère equation with periodic data. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 1, pp. 97-120. doi : 10.1016/j.anihpc.2003.01.005. https://www.numdam.org/articles/10.1016/j.anihpc.2003.01.005/
[1] A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. 13 (1990) 129-134. | MR | Zbl
,[2] Interior W2,p estimates for solutions of the Monge-Ampère equation, Ann. of Math. 131 (1990) 135-150. | MR | Zbl
,[3] Graduate Course at the Courant Institute, New York University, New York, 1995.
,[4] Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000) 547-563. | MR | Zbl
,[5] Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. | MR | Zbl
, ,[6] Properties of the solutions of the linearized Monge-Ampère equation, Amer. J. Math. 119 (1997) 423-465. | MR | Zbl
, ,[7] An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. 56 (2003) 549-583. | MR | Zbl
, ,[8] The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984) 369-402. | MR | Zbl
, , ,[9] On the regularity of solutions to Monge-Ampère equations on Hessian manifolds, Comm. Partial Differential Equations 26 (2001) 2339-2351. | MR | Zbl
, ,[10] Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958). | MR | Zbl
,[11] The real Monge-Ampère equation and affine flat structures, in: Proceedings of the Symposium on Differential Geometry and Differential Equations, vols. 1-3, Beijing, 1980, Science Press, Beijing, 1982, pp. 339-370. | MR | Zbl
, ,[12] Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839-866. | MR | Zbl
, ,[13] A variational theory of the Hessian equation, Comm. Pure Appl. Math. 54 (2001) 1029-1064. | MR | Zbl
, ,[14] Differentiation of Integrals in Rn, Lecture Notes, vol. 481, Springer-Verlag, Berlin, 1976. | Zbl
,[15] Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982) 333-363. | MR | Zbl
,[16] Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. | MR | Zbl
, ,[17] Über die Lösungen der Differentialgleichung rt−s2=1, Math. Ann. 127 (1954) 130-134.
,[18] Boundedly inhomogeneous elliptic and parabolic equation in a domain, Izv. Akad. Nauk SSSR 47 (1983) 75-108. | MR | Zbl
,[19] An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk. SSSR 245 (1979) 253-255, English translation in: , Soviet Math. Dokl. 20 (1979) 253-255. | MR | Zbl
, ,[20] Some existence results of fully nonlinear elliptic equations of Monge-Ampère type, Comm. Pure Appl. Math. 43 (1990) 233-271. | MR | Zbl
,[21] On the improper affine hypersurfaces, Geom. Dedicata 1 (1972) 33-46. | MR | Zbl
,[22] The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000) 399-422. | MR | Zbl
, ,- On the existence of radial solutions to a nonlinear k-Hessian system with gradient term, Nonlinear Analysis: Real World Applications, Volume 82 (2025), p. 104255 | DOI:10.1016/j.nonrwa.2024.104255
- Some applications and maximum principles for multi-term time-space fractional parabolic Monge-Ampère equation, Demonstratio Mathematica, Volume 57 (2024) no. 1 | DOI:10.1515/dema-2024-0031
- Symmetry of solutions of minimal gradient graph equations on punctured space, Israel Journal of Mathematics, Volume 255 (2023) no. 1, p. 81 | DOI:10.1007/s11856-022-2405-4
- A Liouville theorem for the Neumann problem of Monge-Ampère equations, Journal of Functional Analysis, Volume 284 (2023) no. 6, p. 109817 | DOI:10.1016/j.jfa.2022.109817
- New Results on the Radial Solutions to a Class of Nonlinear k‐Hessian System, Journal of Mathematics, Volume 2022 (2022) no. 1 | DOI:10.1155/2022/6681813
- Liouville property and existence of entire solutions of Hessian equations, Nonlinear Analysis, Volume 223 (2022), p. 113020 | DOI:10.1016/j.na.2022.113020
- Ancient solutions of exterior problem of parabolic Monge–Ampère equations, Annali di Matematica Pura ed Applicata (1923 -), Volume 200 (2021) no. 4, p. 1605 | DOI:10.1007/s10231-020-01049-3
- Asymptotic expansion at infinity of solutions of Monge–Ampère type equations, Nonlinear Analysis, Volume 212 (2021), p. 112450 | DOI:10.1016/j.na.2021.112450
- The exterior Dirichlet problems of Monge–Ampère equations in dimension two, Boundary Value Problems, Volume 2020 (2020) no. 1 | DOI:10.1186/s13661-020-01476-4
- Existence of entire solutions of Monge–Ampère equations with prescribed asymptotic behavior, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 6 | DOI:10.1007/s00526-019-1639-4
- Optimization approach for the Monge-Ampère equation, Acta Mathematica Scientia, Volume 38 (2018) no. 4, p. 1285 | DOI:10.1016/s0252-9602(18)30814-2
- A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 35 (2018) no. 5, p. 1143 | DOI:10.1016/j.anihpc.2017.09.007
- An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 3 | DOI:10.1007/s00526-018-1363-5
- Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère equation, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 6 | DOI:10.1007/s00526-018-1428-5
- A rigidity theorem of
α -relative parabolic hyperspheres, manuscripta mathematica, Volume 154 (2017) no. 3-4, p. 503 | DOI:10.1007/s00229-017-0918-7 - A Simple Proof of a Rigidity Theorem for an Affine Kähler–Ricci Flat Graph, Results in Mathematics, Volume 70 (2016) no. 1-2, p. 249 | DOI:10.1007/s00025-015-0478-7
- Boundary ε-regularity in optimal transportation, Advances in Mathematics, Volume 273 (2015), p. 540 | DOI:10.1016/j.aim.2014.12.032
- On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space III, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 3, p. 3337 | DOI:10.1007/s00526-015-0905-3
- Partial regularity for optimal transport maps, Publications mathématiques de l'IHÉS, Volume 121 (2015) no. 1, p. 81 | DOI:10.1007/s10240-014-0064-7
- On the Monge–Ampère equation for characterizing gamma-Gaussian model, Statistics Probability Letters, Volume 83 (2013) no. 7, p. 1692 | DOI:10.1016/j.spl.2013.03.023
- The Bernstein theorem for a class of fourth order equations, Calculus of Variations and Partial Differential Equations, Volume 43 (2012) no. 1-2, p. 25 | DOI:10.1007/s00526-011-0401-3
- A characterization of Poisson-Gaussian families by generalized variance, Bernoulli, Volume 12 (2006) no. 2 | DOI:10.3150/bj/1145993979
Cité par 22 documents. Sources : Crossref