Droplet spreading under weak slippage : the waiting time phenomenon
Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 2, pp. 255-269.
@article{AIHPC_2004__21_2_255_0,
     author = {Gr\"un, G\"unther},
     title = {Droplet spreading under weak slippage : the waiting time phenomenon},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {255--269},
     publisher = {Elsevier},
     volume = {21},
     number = {2},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.02.002},
     mrnumber = {2047357},
     zbl = {1062.35012},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2003.02.002/}
}
TY  - JOUR
AU  - Grün, Günther
TI  - Droplet spreading under weak slippage : the waiting time phenomenon
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 255
EP  - 269
VL  - 21
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2003.02.002/
DO  - 10.1016/j.anihpc.2003.02.002
LA  - en
ID  - AIHPC_2004__21_2_255_0
ER  - 
%0 Journal Article
%A Grün, Günther
%T Droplet spreading under weak slippage : the waiting time phenomenon
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 255-269
%V 21
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2003.02.002/
%R 10.1016/j.anihpc.2003.02.002
%G en
%F AIHPC_2004__21_2_255_0
Grün, Günther. Droplet spreading under weak slippage : the waiting time phenomenon. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 2, pp. 255-269. doi : 10.1016/j.anihpc.2003.02.002. https://www.numdam.org/articles/10.1016/j.anihpc.2003.02.002/

[1] Beretta E., Bertsch M., Dal Passo R., Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal. 129 (1995) 175-200. | MR | Zbl

[2] Bernis F., Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, in: Diaz J.I., Herrero M.A., Linan A., Vazquez J.L. (Eds.), Free Boundary Problems: Theory and Applications, Pitman Research Notes in Mathematics, vol. 323, Longman, Harlow, 1995, pp. 40-56. | MR | Zbl

[3] Bernis F., Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equations 1 (3) (1996) 337-368. | MR | Zbl

[4] Bertsch M., Dal Passo R., Garcke H., Grün G., The thin viscous flow equation in higher space dimensions, Adv. Differential Equations 3 (1998) 417-440. | MR | Zbl

[5] Dal Passo R., Garcke H., Grün G., On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal. 29 (1998) 321-342. | MR | Zbl

[6] Dal Passo R., Giacomelli L., Grün G., A waiting time phenomenon for thin film equations, Ann. Scuola Norm. Sup. Pisa 30 (2001) 437-463. | Numdam | MR | Zbl

[7] Dal Passo R., Giacomelli L., Shishkov A., The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations 26 (2001) 1509-1557. | MR | Zbl

[8] De Gennes P.G., Wetting: statistics and dynamics, Rev. Modern Phys. 57 (1985) 827-863.

[9] Ferreira R., Bernis F., Source-type solutions to thin-film equations in higher space dimensions, European J. Appl. Math. 8 (1997) 507-524. | MR | Zbl

[10] Grün G., Droplet spreading under weak slippage: a basic result on finite speed of propagation, SIAM J. Math. Anal. 34 (2003) 992-1006. | MR | Zbl

[11] Grün G., On Bernis' interpolation inequalities in multiple space dimensions, Z. Anal. Anwendungen 20 (2001) 987-998. | MR | Zbl

[12] Grün G., On free boundary problems arising in thin film flow, Habilitation thesis, University of Bonn, 2001.

[13] Grün G., Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case, Interfaces Free Bound. 4 (2002) 309-323. | MR | Zbl

[14] Hardy G.H., Note on a theorem of Hilbert, Math. Z. 6 (1920) 314-317. | JFM | MR

[15] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1934. | JFM

[16] Hulshof J., Shishkov A., The thin film equation with 2≤n<3: finite speed of propagation in terms of the L1-norm, Adv. Differential Equations 3 (1998) 625-642. | Zbl

[17] Jäger W., Mikelic A., On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations 170 (2001) 96-122. | MR | Zbl

[18] Opic B., Kufner A., Hardy-Type Inequalities, Pitman Research Notes, vol. 219, Longman, Harlow, 1990. | MR | Zbl

[19] Oron A., Davis S.H., Bankoff S.G., Long-scale evolution of thin liquid films, Rev. Modern Phys. 69 (1997) 932-977.

[20] Otto F., Lubrication approximation with prescribed non-zero contact angle: an existence result, Comm. Partial Differential Equations 23 (1998) 2077-2164. | MR | Zbl

[21] Stampacchia G., Équations elliptiques du second ordre à coefficients discontinus, Les presses de l'université de Montréal, Montréal, 1966. | MR | Zbl

  • Shahrouzi, Mohammad; Boulaaras, Salah; Jan, Rashid Well-posedness and blow-up of solutions for the p(l)-biharmonic wave equation with singular dissipation and variable-exponent logarithmic source, Journal of Pseudo-Differential Operators and Applications, Volume 16 (2025) no. 1 | DOI:10.1007/s11868-025-00680-z
  • Yu, Fanbo; Wu, Xiulan; Zhao, Yaxin Global existence and blow‐up of solutions for a class of pp‐biharmonic wave equations with damping terms and power sources, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 1, p. 218 | DOI:10.1002/mma.10324
  • Lv, Jionghao; Fang, Zhong Bo Asymptotic behaviors of global weak solutions for an epitaxial thin film growth equation, Nonlinear Analysis: Real World Applications, Volume 81 (2025), p. 104209 | DOI:10.1016/j.nonrwa.2024.104209
  • Liu, Huijie; Fang, Zhong Bo On a singular epitaxial thin‐film growth equation involving logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 7, p. 5699 | DOI:10.1002/mma.9887
  • De Nitti, Nicola; Taranets, Roman M. Interface Propagation Properties for a Nonlocal Thin-Film Equation, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 1, p. 173 | DOI:10.1137/22m1510297
  • Liu, Zhiqing; Fang, Zhong Bo On a singular parabolic p-biharmonic equation with logarithmic nonlinearity, Nonlinear Analysis: Real World Applications, Volume 70 (2023), p. 103780 | DOI:10.1016/j.nonrwa.2022.103780
  • Giacomelli, Lorenzo; Gnann, Manuel V.; Peschka, Dirk Droplet motion with contact-line friction: long-time asymptotics in complete wetting, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 479 (2023) no. 2274 | DOI:10.1098/rspa.2023.0090
  • De Nitti, Nicola; Fischer, Julian Sharp criteria for the waiting time phenomenon in solutions to the thin-film equation, Communications in Partial Differential Equations, Volume 47 (2022) no. 7, p. 1394 | DOI:10.1080/03605302.2022.2056702
  • Chugunova, M; Taranets, R Mathematical Theory of Higher-Order Degenerate Evolution Models, 2019 | DOI:10.15407/akademperiodyka.382.230
  • Gnann, Manuel V.; Petrache, Mircea The Navier-slip thin-film equation for 3D fluid films: Existence and uniqueness, Journal of Differential Equations, Volume 265 (2018) no. 11, p. 5832 | DOI:10.1016/j.jde.2018.07.015
  • Giacomelli, Lorenzo; Moll, Salvador; Petitta, Francesco Optimal waiting time bounds for some flux-saturated diffusion equations, Communications in Partial Differential Equations, Volume 42 (2017) no. 4, p. 556 | DOI:10.1080/03605302.2017.1294179
  • CHUGUNOVA, MARINA; KING, JOHN R.; TARANETS, ROMAN M. The interface dynamics of a surfactant drop on a thin viscous film, European Journal of Applied Mathematics, Volume 28 (2017) no. 4, p. 656 | DOI:10.1017/s0956792516000474
  • Shao, Yuanzhen Continuous maximal regularity on singular manifolds and its applications, Evolution Equations and Control Theory, Volume 5 (2016) no. 2, p. 303 | DOI:10.3934/eect.2016006
  • Giacomelli, Lorenzo Finite Speed of Propagation and Waiting Time Phenomena for Degenerate Parabolic Equations with Linear Growth Lagrangian, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 3, p. 2426 | DOI:10.1137/130945077
  • Giacomelli, Lorenzo; Gnann, Manuel V.; Knüpfer, Hans; Otto, Felix Well-posedness for the Navier-slip thin-film equation in the case of complete wetting, Journal of Differential Equations, Volume 257 (2014) no. 1, p. 15 | DOI:10.1016/j.jde.2014.03.010
  • Giacomelli, Lorenzo; Knüpfer, Hans A Free Boundary Problem of Fourth Order: Classical Solutions in Weighted Hölder Spaces, Communications in Partial Differential Equations, Volume 35 (2010) no. 11, p. 2059 | DOI:10.1080/03605302.2010.494262
  • Giacomelli, Lorenzo; Knüpfer, Hans; Otto, Felix Smooth zero-contact-angle solutions to a thin-film equation around the steady state, Journal of Differential Equations, Volume 245 (2008) no. 6, p. 1454 | DOI:10.1016/j.jde.2008.06.005
  • Blowey, James F.; King, John R.; Langdon, Stephen Small- and Waiting-Time Behavior of the Thin-Film Equation, SIAM Journal on Applied Mathematics, Volume 67 (2007) no. 6, p. 1776 | DOI:10.1137/060667682
  • Grün, Günther Droplet Spreading Under Weak Slippage—Existence for the Cauchy Problem, Communications in Partial Differential Equations, Volume 29 (2005) no. 11-12, p. 1697 | DOI:10.1081/pde-200040193

Cité par 19 documents. Sources : Crossref