@article{AIHPC_2004__21_2_255_0, author = {Gr\"un, G\"unther}, title = {Droplet spreading under weak slippage : the waiting time phenomenon}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {255--269}, publisher = {Elsevier}, volume = {21}, number = {2}, year = {2004}, doi = {10.1016/j.anihpc.2003.02.002}, mrnumber = {2047357}, zbl = {1062.35012}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2003.02.002/} }
TY - JOUR AU - Grün, Günther TI - Droplet spreading under weak slippage : the waiting time phenomenon JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 255 EP - 269 VL - 21 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2003.02.002/ DO - 10.1016/j.anihpc.2003.02.002 LA - en ID - AIHPC_2004__21_2_255_0 ER -
%0 Journal Article %A Grün, Günther %T Droplet spreading under weak slippage : the waiting time phenomenon %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 255-269 %V 21 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2003.02.002/ %R 10.1016/j.anihpc.2003.02.002 %G en %F AIHPC_2004__21_2_255_0
Grün, Günther. Droplet spreading under weak slippage : the waiting time phenomenon. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 2, pp. 255-269. doi : 10.1016/j.anihpc.2003.02.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2003.02.002/
[1] Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal. 129 (1995) 175-200. | MR | Zbl
, , ,[2] Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, in: , , , (Eds.), Free Boundary Problems: Theory and Applications, Pitman Research Notes in Mathematics, vol. 323, Longman, Harlow, 1995, pp. 40-56. | MR | Zbl
,[3] Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equations 1 (3) (1996) 337-368. | MR | Zbl
,[4] The thin viscous flow equation in higher space dimensions, Adv. Differential Equations 3 (1998) 417-440. | MR | Zbl
, , , ,[5] On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal. 29 (1998) 321-342. | MR | Zbl
, , ,[6] A waiting time phenomenon for thin film equations, Ann. Scuola Norm. Sup. Pisa 30 (2001) 437-463. | Numdam | MR | Zbl
, , ,[7] The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations 26 (2001) 1509-1557. | MR | Zbl
, , ,[8] Wetting: statistics and dynamics, Rev. Modern Phys. 57 (1985) 827-863.
,[9] Source-type solutions to thin-film equations in higher space dimensions, European J. Appl. Math. 8 (1997) 507-524. | MR | Zbl
, ,[10] Droplet spreading under weak slippage: a basic result on finite speed of propagation, SIAM J. Math. Anal. 34 (2003) 992-1006. | MR | Zbl
,[11] On Bernis' interpolation inequalities in multiple space dimensions, Z. Anal. Anwendungen 20 (2001) 987-998. | MR | Zbl
,[12] On free boundary problems arising in thin film flow, Habilitation thesis, University of Bonn, 2001.
,[13] Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case, Interfaces Free Bound. 4 (2002) 309-323. | MR | Zbl
,[14] Note on a theorem of Hilbert, Math. Z. 6 (1920) 314-317. | JFM | MR
,[15] Inequalities, Cambridge University Press, Cambridge, 1934. | JFM
, , ,[16] The thin film equation with 2≤n<3: finite speed of propagation in terms of the L1-norm, Adv. Differential Equations 3 (1998) 625-642. | Zbl
, ,[17] On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations 170 (2001) 96-122. | MR | Zbl
, ,[18] Hardy-Type Inequalities, Pitman Research Notes, vol. 219, Longman, Harlow, 1990. | MR | Zbl
, ,[19] Long-scale evolution of thin liquid films, Rev. Modern Phys. 69 (1997) 932-977.
, , ,[20] Lubrication approximation with prescribed non-zero contact angle: an existence result, Comm. Partial Differential Equations 23 (1998) 2077-2164. | MR | Zbl
,[21] Équations elliptiques du second ordre à coefficients discontinus, Les presses de l'université de Montréal, Montréal, 1966. | MR | Zbl
,Cité par Sources :