Existence by minimisation of solitary water waves on an ocean of infinite depth
Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 4, pp. 503-516.
@article{AIHPC_2004__21_4_503_0,
     author = {Buffoni, B},
     title = {Existence by minimisation of solitary water waves on an ocean of infinite depth},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {503--516},
     publisher = {Elsevier},
     volume = {21},
     number = {4},
     year = {2004},
     doi = {10.1016/j.anihpc.2003.06.003},
     mrnumber = {2069635},
     zbl = {1109.76013},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2003.06.003/}
}
TY  - JOUR
AU  - Buffoni, B
TI  - Existence by minimisation of solitary water waves on an ocean of infinite depth
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 503
EP  - 516
VL  - 21
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2003.06.003/
DO  - 10.1016/j.anihpc.2003.06.003
LA  - en
ID  - AIHPC_2004__21_4_503_0
ER  - 
%0 Journal Article
%A Buffoni, B
%T Existence by minimisation of solitary water waves on an ocean of infinite depth
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 503-516
%V 21
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2003.06.003/
%R 10.1016/j.anihpc.2003.06.003
%G en
%F AIHPC_2004__21_4_503_0
Buffoni, B. Existence by minimisation of solitary water waves on an ocean of infinite depth. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 4, pp. 503-516. doi : 10.1016/j.anihpc.2003.06.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2003.06.003/

[1] Babenko K.I, Some remarks on the theory of surface waves of finite amplitude, Soviet Math. Dokl. 35 (1987) 599-603. | MR | Zbl

[2] Babenko K.I, On a local existence theorem in the theory of surface waves of finite amplitude, Soviet Math. Dokl. 35 (1987) 647-650. | MR | Zbl

[3] B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation, preprint. | MR

[4] Buffoni B, Dancer E.N, Toland J.F, The regularity and local bifurcation of steady periodic water waves, Arch. Rational Mech. Anal. 152 (2000) 207-240. | MR | Zbl

[5] B. Buffoni, É. Séré, J.F. Toland, Surface water waves as saddle points of the energy, Calculus of Variations and Partial Differential Equations, submitted for publication. | Zbl

[6] B. Buffoni, É. Séré, J.F. Toland, Minimisation methods for quasi-linear problems, with an application to periodic water waves, preprint. | MR

[7] Garabedian P.R, Surface waves of finite depth, J. Anal. Math. 14 (1965) 161-169. | MR | Zbl

[8] Iooss G, Kirrmann P, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth, Existence of solitary waves, Arch. Rational Mech. Anal. 136 (1998) 1-19. | MR | Zbl

[9] Logan B.F, Hilbert transform of a function having a bounded integral and a bounded derivative, SIAM J. Math. Anal. 14 (1983) 247-248. | MR | Zbl

[10] Stuart C.A, Bifurcation into Spectral Gaps, Bull. Belg. Math. Soc. Simon Stevin, 1995. | MR | Zbl

[11] Stuart C.A, Bifurcation from the essential spectrum, in: Topological Nonlinear Analysis II (Frascati, 1995), Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser, Boston, 1997, pp. 397-443. | MR | Zbl

[12] Turner R.E.L, A variational approach to surface solitary waves, J. Differential Equations 55 (1984) 401-438. | MR | Zbl

[13] Zygmund A, Trigonometric Series I, II, Cambridge University Press, Cambridge, 1959. | MR | Zbl

Cité par Sources :