@article{AIHPC_2004__21_5_657_0, author = {Du, Yihong}, title = {Multiplicity of positive solutions for an indefinite superlinear elliptic problem on $R^N$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {657--672}, publisher = {Elsevier}, volume = {21}, number = {5}, year = {2004}, doi = {10.1016/j.anihpc.2003.09.002}, zbl = {02116183}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2003.09.002/} }
TY - JOUR AU - Du, Yihong TI - Multiplicity of positive solutions for an indefinite superlinear elliptic problem on $R^N$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 657 EP - 672 VL - 21 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2003.09.002/ DO - 10.1016/j.anihpc.2003.09.002 LA - en ID - AIHPC_2004__21_5_657_0 ER -
%0 Journal Article %A Du, Yihong %T Multiplicity of positive solutions for an indefinite superlinear elliptic problem on $R^N$ %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 657-672 %V 21 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2003.09.002/ %R 10.1016/j.anihpc.2003.09.002 %G en %F AIHPC_2004__21_5_657_0
Du, Yihong. Multiplicity of positive solutions for an indefinite superlinear elliptic problem on $R^N$. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 5, pp. 657-672. doi : 10.1016/j.anihpc.2003.09.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2003.09.002/
[1] On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. 1 (1993) 439-475. | MR | Zbl
, ,[2] Multiple positive fixed points of asymptotically linear maps, J. Funct. Anal. 17 (1974) 174-213. | MR | Zbl
,[3] A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations 146 (1998) 336-374. | MR | Zbl
, ,[4] Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonl. Anal. 4 (1994) 59-78. | MR | Zbl
, , ,[5] Variational methods for indefinite superlinear homogeneous elliptic problems, Nonlinear Differential Equations Appl. 2 (1995) 553-572. | MR | Zbl
, , ,[6] Some applications of the method of sub- and super-solutions, in: Lecture Notes in Math., vol. 782, Springer-Verlag, Berlin, 1980, pp. 16-41. | MR | Zbl
, ,[7] Existence of positive solutions for a class of indefinite elliptic problems in RN, Calc. Var. 13 (2001) 159-189. | MR | Zbl
, ,[8] Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971) 321-340. | MR | Zbl
, ,[9] The structure of the solution set of a class of nonlinear eigenvalue problems, J. Math. Anal. Appl. 170 (1992) 567-580. | MR | Zbl
,[10] Mountain pass solutions and an indefinite superlinear elliptic problem on RN, Topological Methods in Nonl. Anal. 22 (2003) 69-92. | MR | Zbl
, ,[11] Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal. 31 (1999) 1-18. | MR | Zbl
, ,[12] Y. Du, S.J. Li, Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, preprint, Univ. of New England, 2003. | Zbl
[13] Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. 64 (2001) 107-124. | MR | Zbl
, ,[14] Elliptic Partial Differential Equation of Second Order, Springer-Verlag, 1977. | MR | Zbl
, ,[15] On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982) 441-467. | MR | Zbl
,[16] Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Nonlineaire 14 (1997) 237-274. | EuDML | Numdam | MR | Zbl
, ,[17] On the positive solutions of the semilinear equation Δu+λu+hup=0 on compact manifolds, Part II, Indiana Univ. Math. J. 40 (1991) 1083-1141. | Zbl
,[18] Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487-513. | MR | Zbl
,[19] On indefinite superlinear elliptic equations, Calc. Var. 4 (1996) 139-153. | MR | Zbl
,[20] Topological Analysis, Princeton Univ. Press, Princeton, 1958. | MR | Zbl
,Cité par Sources :