Quasi-neutral limit for a viscous capillary model of plasma
Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 1, pp. 1-9.
@article{AIHPC_2005__22_1_1_0,
     author = {Bresch, Didier and Desjardins, Beno{\^\i}t and Ducomet, Bernard},
     title = {Quasi-neutral limit for a viscous capillary model of plasma},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--9},
     publisher = {Elsevier},
     volume = {22},
     number = {1},
     year = {2005},
     doi = {10.1016/j.anihpc.2004.02.001},
     mrnumber = {2114408},
     zbl = {1062.35061},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2004.02.001/}
}
TY  - JOUR
AU  - Bresch, Didier
AU  - Desjardins, Benoît
AU  - Ducomet, Bernard
TI  - Quasi-neutral limit for a viscous capillary model of plasma
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2005
SP  - 1
EP  - 9
VL  - 22
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2004.02.001/
DO  - 10.1016/j.anihpc.2004.02.001
LA  - en
ID  - AIHPC_2005__22_1_1_0
ER  - 
%0 Journal Article
%A Bresch, Didier
%A Desjardins, Benoît
%A Ducomet, Bernard
%T Quasi-neutral limit for a viscous capillary model of plasma
%J Annales de l'I.H.P. Analyse non linéaire
%D 2005
%P 1-9
%V 22
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2004.02.001/
%R 10.1016/j.anihpc.2004.02.001
%G en
%F AIHPC_2005__22_1_1_0
Bresch, Didier; Desjardins, Benoît; Ducomet, Bernard. Quasi-neutral limit for a viscous capillary model of plasma. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 1, pp. 1-9. doi : 10.1016/j.anihpc.2004.02.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2004.02.001/

[1] Bresch D., Desjardins B., Lin C.K., On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations 28 (3-4) (2003) 1009-1037. | MR | Zbl

[2] Bresch D., Desjardins B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophique model, Comm. Math. Phys. 238 (1-2) (2003) 211-223. | MR | Zbl

[3] Brezis H., Golse F., Sentis R., Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann : quasi-neutralité des plasmas, C. R. Acad. Sci. Paris Sér. 1 321 (1995) 953-959. | MR | Zbl

[4] Cordier S., Grenier E., Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations 25 (2000) 1099-1113. | MR | Zbl

[5] B. Ducomet, E. Feireisl, H. Petzeltová, I. Straškraba, Global in time weak solutions for compressible barotropic self gravitating fluids, DCDS, 2004, submitted for publication. | MR | Zbl

[6] Jüngel A., Quasi-hydrodynamic Semiconductor Physics, Birkhäuser, Basel, 2001. | MR | Zbl

[7] Jüngel A., Peng Y.-J., A hierarchy of hydrodynamic models for plasmas, Ann. Inst. Henri Poincaré, Anal. Non Lin. 17 (2000) 83-118. | EuDML | Numdam | MR | Zbl

[8] Lions P.-L., Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. | MR | Zbl

[9] Markowich P., Ringhofer C.A., Schmeiser C.A., Semiconductor Equations, Springer-Verlag, New York, 1990. | MR | Zbl

[10] Y.-J. Peng, Y.G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, 2003, submitted for publication. | Zbl

Cité par Sources :