@article{AIHPC_2005__22_5_521_0, author = {Barles, Guy and Da Lio, Francesca}, title = {On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear {Neumann} boundary conditions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {521--541}, publisher = {Elsevier}, volume = {22}, number = {5}, year = {2005}, doi = {10.1016/j.anihpc.2004.09.001}, mrnumber = {2171989}, zbl = {02235966}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.09.001/} }
TY - JOUR AU - Barles, Guy AU - Da Lio, Francesca TI - On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 521 EP - 541 VL - 22 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.09.001/ DO - 10.1016/j.anihpc.2004.09.001 LA - en ID - AIHPC_2005__22_5_521_0 ER -
%0 Journal Article %A Barles, Guy %A Da Lio, Francesca %T On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 521-541 %V 22 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.09.001/ %R 10.1016/j.anihpc.2004.09.001 %G en %F AIHPC_2005__22_5_521_0
Barles, Guy; Da Lio, Francesca. On the boundary ergodic problem for fully nonlinear equations in bounded domains with general nonlinear Neumann boundary conditions. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 5, pp. 521-541. doi : 10.1016/j.anihpc.2004.09.001. https://www.numdam.org/articles/10.1016/j.anihpc.2004.09.001/
[1] Viscosity solutions methods for singular perturbations in deterministic and stochastic control, SIAM J. Control Optim. 40 (4) (2001/02) 1159-1188. | MR | Zbl
, ,[2] Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result, Arch. Rational Mech. Anal. 170 (1) (2003) 17-61. | MR | Zbl
, ,[3] Ergodic problem for the Hamilton-Jacobi-Bellman equation. I. Existence of the ergodic attractor, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (4) (1997) 415-438. | EuDML | Numdam | MR | Zbl
,[4] Ergodic problem for the Hamilton-Jacobi-Bellman equation. II, Ann. Inst. Poincaré Anal. Non Linéaire 15 (1) (1998) 1-24. | EuDML | Numdam | MR | Zbl
,[5] Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Linéaire 20 (2) (2003) 293-332. | EuDML | Numdam | MR | Zbl
,[6] On ergodic stochastic control, Comm. Partial Differential Equations 23 (11-12) (1998) 2187-2217. | MR | Zbl
, ,[7] A viscosity solutions approach to some asymptotic problems in optimal control, in: Partial Differential Equation Methods in Control and Shape Analysis (Pisa), Lecture Notes in Pure and Appl. Math., vol. 188, Dekker, New York, 1997, pp. 29-39. | MR | Zbl
, , ,[8] On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel) 73 (4) (1999) 276-285. | MR | Zbl
, ,[9] Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications, J. Differential Equations 154 (1999) 191-224. | MR | Zbl
,
[10] G. Barles, F. Da Lio, Local
[11] Remarques sur les problèmes de riflexion obliques, C. R. Acad. Sci. Paris, Ser. I 320 (1995) 69-74. | MR | Zbl
, ,[12] G. Barles, M. Ramaswamy, Sufficient structure conditions for uniqueness of viscosity solutions of semilinear and quasilinear equations, NoDEA, in press. | MR | Zbl
[13] On the large time behaviour of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal. 31 (4) (2000) 925-939. | MR | Zbl
, ,[14] Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal. 32 (6) (2001) 1311-1323. | MR | Zbl
, ,[15] Perturbation methods in optimal control, Wiley/Gauthier-Villars Series in Modern Applied Mathematics, Wiley, Chichester, 1988, Translated from the French by C. Tomson. | MR | Zbl
,
[16] On Bellman equations of ergodic control in
[17] Ergodic control Bellman equation with Neumann boundary conditions, in: Stochastic Theory and Control (Lawrence, KS, 2001), Lecture Notes in Control and Inform. Sci., vol. 280, Springer, Berlin, 2002, pp. 59-71. | MR | Zbl
, ,[18] Hamilton-Jacobi equations with state constraints, Trans. Amer. Math. Soc. 318 (2) (1990) 643-683. | MR | Zbl
, ,[19] Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalues and variational formula, Indiana Univ. Math. J. 45 (4) (1996) 1095-1117. | MR | Zbl
,[20] Periodic homogenization of Hamilton-Jacobi equations: II: Eikonal equations, Proc. Roy. Soc. Edinburgh Sect. A 127 (4) (1997) 665-689. | MR | Zbl
,[21] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Soc. 27 (1992) 1-67. | MR | Zbl
, , ,[22] The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111 (3-4) (1989) 359-375. | MR | Zbl
,[23] Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 120 (3-4) (1992) 245-265. | MR | Zbl
,[24] Effective Hamiltonians and averaging for Hamiltonian dynamics. I., Arch. Rational Mech. Anal. 157 (1) (2001) 1-33. | MR | Zbl
, ,[25] Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris, Sér. I Math. 324 (1997) 1043-1046. | MR | Zbl
,[26] Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris, Sér. I Math. 325 (6) (1997) 649-652. | MR | Zbl
,[27] Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris, Sér. I Math. 327 (3) (1998) 267-270. | MR | Zbl
,[28] Almost periodic homogenization of Hamilton-Jacobi equations, in: International Conference on Differential Equations, vols. 1, 2 (Berlin, 1999), World Sci., River Edge, NJ, 2000, pp. 600-605. | MR | Zbl
,[29] Perron's method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987) 369-384. | MR | Zbl
,[30] Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann. 283 (1989) 583-630. | MR | Zbl
, ,[31] Neumann type boundary conditions for Hamilton-Jacobi equations, Duke Math. J. 52 (4) (1985) 793-820. | MR | Zbl
,[32] P.-L. Lions, G. Papanicolaou, S.R.S Varadhan, unpublished preprint.
[33] Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. XXXVII (1984) 511-537. | MR | Zbl
, ,[34] Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations 24 (5-6) (1999) 883-893. | MR | Zbl
, ,- Convergence of smooth solutions to parabolic equations with an oblique derivative boundary condition, AIMS Mathematics, Volume 9 (2024) no. 2, p. 2824 | DOI:10.3934/math.2024140
- Global
-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition, Discrete Continuous Dynamical Systems, Volume 42 (2022) no. 3, p. 1201 | DOI:10.3934/dcds.2021152 - Mean curvature flow in a Riemannian manifold endowed with a Killing vector field, Pacific Journal of Mathematics, Volume 308 (2020) no. 2, p. 435 | DOI:10.2140/pjm.2020.308.435
- On unbounded solutions of ergodic problems for non-local Hamilton–Jacobi equations, Nonlinear Analysis, Volume 180 (2019), p. 94 | DOI:10.1016/j.na.2018.09.015
- The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems, Journal de Mathématiques Pures et Appliquées, Volume 108 (2017) no. 3, p. 261 | DOI:10.1016/j.matpur.2016.11.002
- A Probabilistic Approach to Large Time Behaviour of Viscosity Solutions of Parabolic Equations with Neumann Boundary Conditions, Applied Mathematics Optimization, Volume 74 (2016) no. 2, p. 345 | DOI:10.1007/s00245-015-9318-0
- On unbounded solutions of ergodic problems in ℝmfor viscous Hamilton–Jacobi equations, Communications in Partial Differential Equations, Volume 41 (2016) no. 12, p. 1985 | DOI:10.1080/03605302.2016.1244208
- Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control, ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 3, p. 842 | DOI:10.1051/cocv/2015033
- Multi-population Mean Field Games systems with Neumann boundary conditions, Journal de Mathématiques Pures et Appliquées, Volume 103 (2015) no. 5, p. 1294 | DOI:10.1016/j.matpur.2014.10.013
- Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations, Calculus of Variations and Partial Differential Equations, Volume 50 (2014) no. 1-2, p. 283 | DOI:10.1007/s00526-013-0636-2
- Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem, ESAIM: Control, Optimisation and Calculus of Variations, Volume 18 (2012) no. 4, p. 954 | DOI:10.1051/cocv/2011203
- Periodic traveling waves of a mean curvature equation in high dimensional cylinders, Applied Mathematics and Computation, Volume 217 (2011) no. 22, p. 9267 | DOI:10.1016/j.amc.2011.04.004
- Dislocation dynamics: from microscopic models to macroscopic crystal plasticity, Continuum Mechanics and Thermodynamics, Volume 21 (2009) no. 2, p. 109 | DOI:10.1007/s00161-009-0103-7
- Ergodic BSDEs and related PDEs with Neumann boundary conditions, Stochastic Processes and their Applications, Volume 119 (2009) no. 9, p. 2945 | DOI:10.1016/j.spa.2009.03.005
- Un théorème de représentation des solutions de viscosité d'une équation d'Hamilton–Jacobi–Bellman ergodique dégénérée sur le tore, Comptes Rendus. Mathématique, Volume 346 (2008) no. 21-22, p. 1149 | DOI:10.1016/j.crma.2008.09.020
- The Neumann problem for singular fully nonlinear operators, Journal de Mathématiques Pures et Appliquées, Volume 90 (2008) no. 3, p. 286 | DOI:10.1016/j.matpur.2008.04.007
- Large time behavior of solutions to parabolic equations with Neumann boundary conditions, Journal of Mathematical Analysis and Applications, Volume 339 (2008) no. 1, p. 384 | DOI:10.1016/j.jmaa.2007.06.052
Cité par 17 documents. Sources : Crossref