@article{AIHPC_2005__22_5_543_0, author = {Winklmann, Sven}, title = {Pointwise curvature estimates for $F$-stable hypersurfaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {543--555}, publisher = {Elsevier}, volume = {22}, number = {5}, year = {2005}, doi = {10.1016/j.anihpc.2004.10.005}, zbl = {1088.53042}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.005/} }
TY - JOUR AU - Winklmann, Sven TI - Pointwise curvature estimates for $F$-stable hypersurfaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 543 EP - 555 VL - 22 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.005/ DO - 10.1016/j.anihpc.2004.10.005 LA - en ID - AIHPC_2005__22_5_543_0 ER -
%0 Journal Article %A Winklmann, Sven %T Pointwise curvature estimates for $F$-stable hypersurfaces %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 543-555 %V 22 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.005/ %R 10.1016/j.anihpc.2004.10.005 %G en %F AIHPC_2005__22_5_543_0
Winklmann, Sven. Pointwise curvature estimates for $F$-stable hypersurfaces. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 5, pp. 543-555. doi : 10.1016/j.anihpc.2004.10.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.005/
[1] Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927) 551-558. | JFM | MR
,[2] Sätze über Extremalen parametrischer Funktionale, Bonner Math. Schriften 322 (1999) 1-79. | MR | Zbl
,[3] Enclosure theorems for extremals of elliptic parametric functionals, Calc. Var. Partial Differential Equations 15 (2002) 313-324. | MR | Zbl
,[4] On surfaces of prescribed F-mean curvature, Pacific J. Math. 213 (2004) 15-36. | MR | Zbl
, ,[5] A Bernstein result for energy minimizing hypersurfaces, Calc. Var. Partial Differential Equations 1 (1993) 37-54. | MR | Zbl
,[6] Curvature estimates for minimal hypersurfaces in singular spaces, Invent. Math. 122 (1995) 453-473. | MR | Zbl
,[7] Minimal surfaces I, Grundlehren Math. Wiss., vol. 295, Springer, 1992. | MR | Zbl
, , , ,[8] S. Fröhlich, Krümmungsabschätzungen für μ-stabile G-Minimalflächen, Dissertation, Cottbus, 2001.
[9] Curvature estimates for μ-stable G-minimal surfaces and theorems of Bernstein type, Analysis 22 (2002) 109-130.
,[10] Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer, 1977. | MR | Zbl
, ,[11] Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1952) 51-56. | MR | Zbl
,[12] On two-dimensional variational problems in parametric form, Arch. Rational Mech. Anal. 8 (1961) 181-206. | MR | Zbl
,[13] Estimates for surfaces which are stationary for an elliptic parametric integral, J. Partial Differential Equations 3 (1990) 78-92. | MR | Zbl
,[14] Sobolev and mean-value inequalities on generalized submanifolds of , Comm. Pure Appl. Math. 26 (1973) 361-379. | MR | Zbl
, ,[15] A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960) 457-468. | MR | Zbl
,[16] K. Räwer, Stabile Extremalen parametrischer Doppelintegrale in , Dissertation, Bonn, 1993. | Zbl
[17] Curvature estimates for immersions of minimal surface type via uniformization and theorems of Bernstein type, Manuscripta Math. 67 (1990) 67-97. | MR | Zbl
,[18] Estimates for stable minimal surfaces in three dimensional manifolds, in: (Ed.), Seminar on Minimal Submanifolds, Ann. Math. Stud., vol. 103, 1983, pp. 111-126. | MR | Zbl
,[19] Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975) 275-288. | MR | Zbl
, , ,[20] Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34 (1981) 741-797. | MR | Zbl
, ,[21] Remarks on curvature estimates for minimal hypersurfaces, Duke Math. J. 43 (1976) 545-553. | MR | Zbl
,[22] On some extensions of Bernstein's theorem, Math. Z. 154 (1977) 265-273. | MR | Zbl
,[23] Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987) 243-256. | MR | Zbl
,[24] Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on 3-manifolds, J. Differential Geom. 33 (1991) 413-443. | MR | Zbl
,[25] Integral curvature estimates for F-stable hypersurfaces, Calc. Var. Partial Differential Equations (2004). | MR | Zbl
,Cité par Sources :