@article{AIHPC_2005__22_4_509_0, author = {Wang, Chang You}, title = {A compactness theorem of $n$-harmonic maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {509--519}, publisher = {Elsevier}, volume = {22}, number = {4}, year = {2005}, doi = {10.1016/j.anihpc.2004.10.007}, zbl = {02191852}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.007/} }
TY - JOUR AU - Wang, Chang You TI - A compactness theorem of $n$-harmonic maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 509 EP - 519 VL - 22 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.007/ DO - 10.1016/j.anihpc.2004.10.007 LA - en ID - AIHPC_2005__22_4_509_0 ER -
%0 Journal Article %A Wang, Chang You %T A compactness theorem of $n$-harmonic maps %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 509-519 %V 22 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.007/ %R 10.1016/j.anihpc.2004.10.007 %G en %F AIHPC_2005__22_4_509_0
Wang, Chang You. A compactness theorem of $n$-harmonic maps. Annales de l'I.H.P. Analyse non linéaire, Volume 22 (2005) no. 4, pp. 509-519. doi : 10.1016/j.anihpc.2004.10.007. http://archive.numdam.org/articles/10.1016/j.anihpc.2004.10.007/
[1] Weak limits of Palais-Smale sequences for a class of critical functionals, Calc. Var. Partial Differential Equations 1 (3) (1993) 267-310. | MR | Zbl
,[2] On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993) 417-443. | MR | Zbl
,[3] The weak solutions to the evolution problems of harmonic maps, Math. Z. 201 (1) (1989) 69-74. | MR | Zbl
,[4] Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247-286. | MR | Zbl
, , , ,[5] Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991) 101-113. | MR | Zbl
,[6] Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 74, 1990. | MR | Zbl
,[7] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992. | MR | Zbl
, ,[8] spaces of several variables, Acta Math. 129 (1972) 137-193. | MR | Zbl
, ,[9] Weak convergence of wave maps from (1+2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math. 130 (3) (1997) 589-617. | MR | Zbl
, , ,[10] Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (6) (1998) 725-754. | Numdam | MR | Zbl
, , ,[11] The blow-up of p-harmonic maps, Manuscripta Math. 81 (1-2) (1993) 89-94. | MR | Zbl
,[12] Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, C. R. Acad. Sci. Paris 312 (1991) 591-596. | MR | Zbl
,[13] Mappings minimizing the norm of the gradient, Comm. Pure Appl. Math. 40 (5) (1987) 555-588. | MR | Zbl
, ,[14] Strong convergence of p-harmonic mappings, in: Progress in Partial Differential Equations: The Metz Surveys, 3, Pitman Res. Notes Math. Ser., vol. 314, Longman Sci. Tech., Harlow, 1994, pp. 58-64. | MR | Zbl
, , ,[15] Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Math., vol. 150, Cambridge Univ. Press, Cambridge, 2002. | MR | Zbl
,[16] m-harmonic flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (4) (1997) 593-631, (1998). | Numdam | MR | Zbl
,[17] Quasiregular mappings in even dimensions, Acta Math. 170 (1) (1993) 29-81. | MR | Zbl
, ,[18] On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961) 415-426. | MR | Zbl
, ,[19] The concentration-compactness principle in the calculus of variations: the limit case, I, Rev. Mat. Iberoamericana 1 (1) (1985) 145-201. | MR | Zbl
,[20] The concentration-compactness principle in the calculus of variations: the limit case, II, Rev. Mat. Iberoamericana 1 (2) (1985) 45-121. | MR | Zbl
,[21] Convergence of minimizers for the p-Dirichlet integral, Math. Z. 213 (3) (1993) 449-456. | MR | Zbl
,[22] The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981) 1-24. | MR | Zbl
, ,[23] A regularity theory for harmonic maps, J. Differential Geom. 17 (2) (1982) 307-335. | MR | Zbl
, ,[24] Weak solutions and development of singularities of the σ-model, Comm. Pure Appl. Math. 41 (4) (1988) 459-469. | Zbl
,[25] A compactness theorem for weak solutions of higher-dimensional H-systems, Duke Math. J. 121 (2) (2004) 269-284. | MR | Zbl
, ,[26] Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1) (1995) 87-113. | MR | Zbl
, ,[27] Connections with -bounds on curvature, Comm. Math. Phys. 83 (1982) 31-42. | MR | Zbl
,[28] Bubble phenomena of certain Palais-Smale sequences from surfaces to general targets, Houston J. Math. 22 (3) (1996) 559-590. | MR | Zbl
,[29] Stationary biharmonic maps from into a Riemannian manifold, Comm. Pure Appl. Math. LVII (2004) 0419-0444. | MR | Zbl
,[30] Biharmonic maps from into a Riemannian manifold, Math. Z. 247 (1) (2004) 65-87. | MR | Zbl
,Cited by Sources: