Local exact controllability to the trajectories of the Boussinesq system
Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 1, pp. 29-61.
@article{AIHPC_2006__23_1_29_0,
     author = {Guerrero, S.},
     title = {Local exact controllability to the trajectories of the {Boussinesq} system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {29--61},
     publisher = {Elsevier},
     volume = {23},
     number = {1},
     year = {2006},
     doi = {10.1016/j.anihpc.2005.01.002},
     mrnumber = {2194580},
     zbl = {1098.35027},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/}
}
TY  - JOUR
AU  - Guerrero, S.
TI  - Local exact controllability to the trajectories of the Boussinesq system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
SP  - 29
EP  - 61
VL  - 23
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/
DO  - 10.1016/j.anihpc.2005.01.002
LA  - en
ID  - AIHPC_2006__23_1_29_0
ER  - 
%0 Journal Article
%A Guerrero, S.
%T Local exact controllability to the trajectories of the Boussinesq system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 29-61
%V 23
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/
%R 10.1016/j.anihpc.2005.01.002
%G en
%F AIHPC_2006__23_1_29_0
Guerrero, S. Local exact controllability to the trajectories of the Boussinesq system. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 1, pp. 29-61. doi : 10.1016/j.anihpc.2005.01.002. https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/

[1] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimal Control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, Translated from the Russian by V.M. Volosov. | MR | Zbl

[2] E. Fernández-Cara, S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optimization, in press.

[3] Fernández-Cara E., Guerrero S., Imanuvilov O.Yu., Puel J.-P., Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. 83 (12) (2004) 1501-1542. | MR | Zbl

[4] Fursikov A.V., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes, vol. 34, Seoul National University, Korea, 1996. | MR | Zbl

[5] Fursikov A.V., Imanuvilov O.Yu., Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optim. 36 (2) (1998) 391-421. | MR | Zbl

[6] Fursikov A.V., Imanuvilov O.Yu., Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk 54 (3) (327) (1999) 93-146, (in Russian). Translation in, Russian Math. Surveys 54 (3) (1999) 565-618. | MR | Zbl

[7] Giga Y., Sohr H., Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991) 72-94. | MR | Zbl

[8] Imanuvilov O.Yu., Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001) 39-72. | Numdam | MR | Zbl

[9] Imanuvilov O.Yu., Puel J.-P., Global Carleman estimates for weak elliptic non homogeneous Dirichlet problem, Int. Math. Res. Notices 16 (2003) 883-913. | MR | Zbl

[10] Ladyzenskaya O.A., Solonnikov A.V., Uraltzeva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, vol. 23, 1967. | MR | Zbl

[11] Temam R., Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., vol. 2, North-Holland, Amsterdam, 1977. | MR | Zbl

  • Barreira, João Carlos F.; Límaco, Juan Local Null Controllability of the Smagorinsky-Boussinesq Model, Analysis and PDE in Latin America, Volume 10 (2024), p. 49 | DOI:10.1007/978-3-031-73274-4_7
  • Fernández-Cara, Enrique; Límaco, Juan B.; Nina-Huaman, Dany On the Controllability of the “Complete” Boussinesq System, Applied Mathematics Optimization, Volume 90 (2024) no. 2 | DOI:10.1007/s00245-024-10171-0
  • Chaves-Silva, F. W.; Fernández-Cara, E.; Balc’h, K. Le; Machado, J. L. F.; Souza, D. A. Global Controllability of the Boussinesq System with Navier-Slip-with-Friction and Robin Boundary Conditions, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 2, p. 484 | DOI:10.1137/21m1425566
  • Lasiecka, Irena; Priyasad, Buddhika; Triggiani, Roberto Finite-dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory, Journal of Inverse and Ill-posed Problems, Volume 30 (2022) no. 1, p. 35 | DOI:10.1515/jiip-2020-0132
  • Triggiani, Roberto; Wan, Xiang Unique Continuation Properties of Over-Determined Static Boussinesq Problems with Application to Uniform Stabilization of Dynamic Boussinesq Systems, Applied Mathematics Optimization, Volume 84 (2021) no. 2, p. 2099 | DOI:10.1007/s00245-020-09705-z
  • Chandrashekar, Praveen; Ramaswamy, Mythily; Raymond, Jean-Pierre; Sandilya, Ruchi Numerical stabilization of the Boussinesq system using boundary feedback control, Computers Mathematics with Applications, Volume 89 (2021), p. 163 | DOI:10.1016/j.camwa.2021.03.001
  • Baranovskii, Evgenii S. Optimal Boundary Control of the Boussinesq Approximation for Polymeric Fluids, Journal of Optimization Theory and Applications, Volume 189 (2021) no. 2, p. 623 | DOI:10.1007/s10957-021-01849-4
  • Guzmán, Patricio Local Exact Controllability to the Trajectories of the Cahn–Hilliard Equation, Applied Mathematics Optimization, Volume 82 (2020) no. 1, p. 279 | DOI:10.1007/s00245-018-9500-2
  • Fu, Xiaoyu; Lü, Qi; Zhang, Xu Carleman Estimates for Second Order Elliptic Operators and Applications, a Unified Approach, Carleman Estimates for Second Order Partial Differential Operators and Applications (2019), p. 17 | DOI:10.1007/978-3-030-29530-1_2
  • Baranovskii, Evgenii S.; Domnich, Anastasia A.; Artemov, Mikhail A. Optimal Boundary Control of Non-Isothermal Viscous Fluid Flow, Fluids, Volume 4 (2019) no. 3, p. 133 | DOI:10.3390/fluids4030133
  • Ramaswamy, Mythily; Raymond, Jean-Pierre; Roy, Arnab Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, Journal of Differential Equations, Volume 266 (2019) no. 7, p. 4268 | DOI:10.1016/j.jde.2018.09.038
  • Araruna, F. D.; Calsavara, B. M. R.; Fernández-Cara, E. Local Exact Controllability of Two-Phase Field Solidification Systems with Few Controls, Applied Mathematics Optimization, Volume 78 (2018) no. 2, p. 267 | DOI:10.1007/s00245-017-9406-4
  • Huaman, Dany Nina; Límaco, Juan; Chávez, Miguel R. Nuñez Local Null Controllability of the N-Dimensional Ladyzhenskaya-Smagorinsky with N-1 Scalar Controls, Recent Advances in PDEs: Analysis, Numerics and Control, Volume 17 (2018), p. 139 | DOI:10.1007/978-3-319-97613-6_8
  • The Anh, Cung; Manh Toi, Vu Local exact controllability to trajectories of the magneto-micropolar fluid equations, Evolution Equations Control Theory, Volume 6 (2017) no. 3, p. 357 | DOI:10.3934/eect.2017019
  • Fernández-Cara, Enrique; Sousa, Ivaldo T. De; Viera, Franciane B. Remarks concerning the approximate controllability of the 3D Navier–Stokes and Boussinesq systems, SeMA Journal, Volume 74 (2017) no. 3, p. 237 | DOI:10.1007/s40324-017-0111-7
  • Araruna, Fágner D.; Fernández-Cara, Enrique; Souza, Diego A. Uniform local null control of the Leray-αmodel, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 4, p. 1181 | DOI:10.1051/cocv/2014011
  • Badra, Mehdi Local Controllability to Trajectories of the Magnetohydrodynamic Equations, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 4, p. 631 | DOI:10.1007/s00021-014-0186-1
  • Badra, Mehdi Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 4, p. 1169 | DOI:10.3934/dcds.2012.32.1169
  • Fernández-Cara, Enrique Motivation, analysis and control of the variable density Navier-Stokes equations, Discrete Continuous Dynamical Systems - S, Volume 5 (2012) no. 6, p. 1021 | DOI:10.3934/dcdss.2012.5.1021
  • Carreño, Nicolás Local controllability of the N-dimensional Boussinesq system with N1 scalar controls in an arbitrary control domain, Mathematical Control Related Fields, Volume 2 (2012) no. 4, p. 361 | DOI:10.3934/mcrf.2012.2.361
  • Fernández-Cara, Enrique; Souza, Diego A. On the control of some coupled systems of the Boussinesq kind with few controls, Mathematical Control and Related Fields, Volume 2 (2012) no. 2, p. 121 | DOI:10.3934/mcrf.2012.2.121
  • Cerpa, Eduardo; Mercado, Alberto Local exact controllability to the trajectories of the 1-D Kuramoto–Sivashinsky equation, Journal of Differential Equations, Volume 250 (2011) no. 4, p. 2024 | DOI:10.1016/j.jde.2010.12.015
  • Badra, Mehdi Global Carleman inequalities for Stokes and penalized Stokes equations, Mathematical Control Related Fields, Volume 1 (2011) no. 2, p. 149 | DOI:10.3934/mcrf.2011.1.149
  • Badra, Mehdi; Takahashi, Takéo Stabilization of Parabolic Nonlinear Systems with Finite Dimensional Feedback or Dynamical Controllers: Application to the Navier–Stokes System, SIAM Journal on Control and Optimization, Volume 49 (2011) no. 2, p. 420 | DOI:10.1137/090778146
  • Fernández-Cara, Enrique Remarks on the Controllability of Some Parabolic Equations and Systems, Applied and Numerical Partial Differential Equations, Volume 15 (2010), p. 81 | DOI:10.1007/978-90-481-3239-3_7

Cité par 25 documents. Sources : Crossref