@article{AIHPC_2006__23_1_29_0, author = {Guerrero, S.}, title = {Local exact controllability to the trajectories of the {Boussinesq} system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {29--61}, publisher = {Elsevier}, volume = {23}, number = {1}, year = {2006}, doi = {10.1016/j.anihpc.2005.01.002}, mrnumber = {2194580}, zbl = {1098.35027}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/} }
TY - JOUR AU - Guerrero, S. TI - Local exact controllability to the trajectories of the Boussinesq system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 29 EP - 61 VL - 23 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/ DO - 10.1016/j.anihpc.2005.01.002 LA - en ID - AIHPC_2006__23_1_29_0 ER -
%0 Journal Article %A Guerrero, S. %T Local exact controllability to the trajectories of the Boussinesq system %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 29-61 %V 23 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/ %R 10.1016/j.anihpc.2005.01.002 %G en %F AIHPC_2006__23_1_29_0
Guerrero, S. Local exact controllability to the trajectories of the Boussinesq system. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 1, pp. 29-61. doi : 10.1016/j.anihpc.2005.01.002. https://www.numdam.org/articles/10.1016/j.anihpc.2005.01.002/
[1] Optimal Control, Contemp. Soviet Math., Consultants Bureau, New York, 1987, Translated from the Russian by V.M. Volosov. | MR | Zbl
, , ,[2] E. Fernández-Cara, S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optimization, in press.
[3] Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. 83 (12) (2004) 1501-1542. | MR | Zbl
, , , ,[4] Controllability of Evolution Equations, Lecture Notes, vol. 34, Seoul National University, Korea, 1996. | MR | Zbl
, ,[5] Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optim. 36 (2) (1998) 391-421. | MR | Zbl
, ,[6] Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk 54 (3) (327) (1999) 93-146, (in Russian). Translation in, Russian Math. Surveys 54 (3) (1999) 565-618. | MR | Zbl
, ,
[7] Abstract
[8] Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001) 39-72. | Numdam | MR | Zbl
,[9] Global Carleman estimates for weak elliptic non homogeneous Dirichlet problem, Int. Math. Res. Notices 16 (2003) 883-913. | MR | Zbl
, ,[10] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, vol. 23, 1967. | MR | Zbl
, , ,[11] Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., vol. 2, North-Holland, Amsterdam, 1977. | MR | Zbl
,- Local Null Controllability of the Smagorinsky-Boussinesq Model, Analysis and PDE in Latin America, Volume 10 (2024), p. 49 | DOI:10.1007/978-3-031-73274-4_7
- On the Controllability of the “Complete” Boussinesq System, Applied Mathematics Optimization, Volume 90 (2024) no. 2 | DOI:10.1007/s00245-024-10171-0
- Global Controllability of the Boussinesq System with Navier-Slip-with-Friction and Robin Boundary Conditions, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 2, p. 484 | DOI:10.1137/21m1425566
- Finite-dimensional boundary uniform stabilization of the Boussinesq system in Besov spaces by critical use of Carleman estimate-based inverse theory, Journal of Inverse and Ill-posed Problems, Volume 30 (2022) no. 1, p. 35 | DOI:10.1515/jiip-2020-0132
- Unique Continuation Properties of Over-Determined Static Boussinesq Problems with Application to Uniform Stabilization of Dynamic Boussinesq Systems, Applied Mathematics Optimization, Volume 84 (2021) no. 2, p. 2099 | DOI:10.1007/s00245-020-09705-z
- Numerical stabilization of the Boussinesq system using boundary feedback control, Computers Mathematics with Applications, Volume 89 (2021), p. 163 | DOI:10.1016/j.camwa.2021.03.001
- Optimal Boundary Control of the Boussinesq Approximation for Polymeric Fluids, Journal of Optimization Theory and Applications, Volume 189 (2021) no. 2, p. 623 | DOI:10.1007/s10957-021-01849-4
- Local Exact Controllability to the Trajectories of the Cahn–Hilliard Equation, Applied Mathematics Optimization, Volume 82 (2020) no. 1, p. 279 | DOI:10.1007/s00245-018-9500-2
- Carleman Estimates for Second Order Elliptic Operators and Applications, a Unified Approach, Carleman Estimates for Second Order Partial Differential Operators and Applications (2019), p. 17 | DOI:10.1007/978-3-030-29530-1_2
- Optimal Boundary Control of Non-Isothermal Viscous Fluid Flow, Fluids, Volume 4 (2019) no. 3, p. 133 | DOI:10.3390/fluids4030133
- Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, Journal of Differential Equations, Volume 266 (2019) no. 7, p. 4268 | DOI:10.1016/j.jde.2018.09.038
- Local Exact Controllability of Two-Phase Field Solidification Systems with Few Controls, Applied Mathematics Optimization, Volume 78 (2018) no. 2, p. 267 | DOI:10.1007/s00245-017-9406-4
- Local Null Controllability of the N-Dimensional Ladyzhenskaya-Smagorinsky with N-1 Scalar Controls, Recent Advances in PDEs: Analysis, Numerics and Control, Volume 17 (2018), p. 139 | DOI:10.1007/978-3-319-97613-6_8
- Local exact controllability to trajectories of the magneto-micropolar fluid equations, Evolution Equations Control Theory, Volume 6 (2017) no. 3, p. 357 | DOI:10.3934/eect.2017019
- Remarks concerning the approximate controllability of the 3D Navier–Stokes and Boussinesq systems, SeMA Journal, Volume 74 (2017) no. 3, p. 237 | DOI:10.1007/s40324-017-0111-7
- Uniform local null control of the Leray-αmodel, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 4, p. 1181 | DOI:10.1051/cocv/2014011
- Local Controllability to Trajectories of the Magnetohydrodynamic Equations, Journal of Mathematical Fluid Mechanics, Volume 16 (2014) no. 4, p. 631 | DOI:10.1007/s00021-014-0186-1
- Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 4, p. 1169 | DOI:10.3934/dcds.2012.32.1169
- Motivation, analysis and control of the variable density Navier-Stokes equations, Discrete Continuous Dynamical Systems - S, Volume 5 (2012) no. 6, p. 1021 | DOI:10.3934/dcdss.2012.5.1021
- Local controllability of the
-dimensional Boussinesq system with scalar controls in an arbitrary control domain, Mathematical Control Related Fields, Volume 2 (2012) no. 4, p. 361 | DOI:10.3934/mcrf.2012.2.361 - On the control of some coupled systems of the Boussinesq kind with few controls, Mathematical Control and Related Fields, Volume 2 (2012) no. 2, p. 121 | DOI:10.3934/mcrf.2012.2.121
- Local exact controllability to the trajectories of the 1-D Kuramoto–Sivashinsky equation, Journal of Differential Equations, Volume 250 (2011) no. 4, p. 2024 | DOI:10.1016/j.jde.2010.12.015
- Global Carleman inequalities for Stokes and penalized Stokes equations, Mathematical Control Related Fields, Volume 1 (2011) no. 2, p. 149 | DOI:10.3934/mcrf.2011.1.149
- Stabilization of Parabolic Nonlinear Systems with Finite Dimensional Feedback or Dynamical Controllers: Application to the Navier–Stokes System, SIAM Journal on Control and Optimization, Volume 49 (2011) no. 2, p. 420 | DOI:10.1137/090778146
- Remarks on the Controllability of Some Parabolic Equations and Systems, Applied and Numerical Partial Differential Equations, Volume 15 (2010), p. 81 | DOI:10.1007/978-90-481-3239-3_7
Cité par 25 documents. Sources : Crossref