@article{AIHPC_2006__23_4_567_0, author = {Ben Ayed, Mohamed and El Mehdi, Khalil and Pacella, Filomena}, title = {Blow-up and nonexistence of sign changing solutions to the {Brezis-Nirenberg} problem in dimension three}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {567--589}, publisher = {Elsevier}, volume = {23}, number = {4}, year = {2006}, doi = {10.1016/j.anihpc.2005.07.001}, zbl = {1157.35357}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2005.07.001/} }
TY - JOUR AU - Ben Ayed, Mohamed AU - El Mehdi, Khalil AU - Pacella, Filomena TI - Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 567 EP - 589 VL - 23 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2005.07.001/ DO - 10.1016/j.anihpc.2005.07.001 LA - en ID - AIHPC_2006__23_4_567_0 ER -
%0 Journal Article %A Ben Ayed, Mohamed %A El Mehdi, Khalil %A Pacella, Filomena %T Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 567-589 %V 23 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2005.07.001/ %R 10.1016/j.anihpc.2005.07.001 %G en %F AIHPC_2006__23_4_567_0
Ben Ayed, Mohamed; El Mehdi, Khalil; Pacella, Filomena. Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 4, pp. 567-589. doi : 10.1016/j.anihpc.2005.07.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2005.07.001/
[1] An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem, Arch. Rational Mech. Anal. 127 (1994) 219-229. | MR | Zbl
, ,[2] Solutions d'équations elliptiques avec exposant de Sobolev critique qui changent de signe, C. R. Acad. Sci. Paris, Sér. I 306 (1988) 711-714. | MR | Zbl
, , ,[3] Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations 85 (1990) 151-170. | MR | Zbl
, , ,[4] Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman Sci. Tech., Harlow, 1989. | MR | Zbl
,[5] A nonexistence result for Yamabe type problems on thin annuli, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 715-744. | Numdam | MR | Zbl
, , ,[6] Some variational problems with lack of compactness, Proc. Sympos. Pure Math. 45 (1986) 165-201. | MR | Zbl
,[7] Remarks on the Schroedinger operator with singular complex potential, J. Math. Pures Appl. 58 (1979) 137-151. | MR | Zbl
, ,[8] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477. | MR | Zbl
, ,[9] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297. | MR | Zbl
, , ,[10] Multiple solutions for the Brezis-Nirenberg problem, Adv. Differential Equations 10 (2005) 463-480. | MR | Zbl
, ,[11] Elliptic equations with critical Sobolev exponent in dimension 3, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 125-142. | Numdam | MR | Zbl
,[12] Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer-Verlag, Berlin, 1977. | MR | Zbl
, ,[13] Prescribing scalar curvature on and related topics, Part I, J. Differential Equations 120 (1995) 319-410. | MR | Zbl
,[14] The role of the Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52. | MR | Zbl
,[15] Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in: Topics in Calculus of Variations, Montecatini Terme, 1987, Lectures Notes in Math., vol. 1365, Springer-Verlag, Berlin, 1989, pp. 120-154. | MR | Zbl
,[16] On the number of solutions of constant scalar curvature in a conformal class, in: , (Eds.), Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, Wiley, 1991, pp. 311-320. | MR | Zbl
,[17] Variational Methods: Applications to Nonlinear PDE & Hamiltonian Systems, Springer-Verlag, Berlin, 1990. | MR | Zbl
,Cité par Sources :