@article{AIHPC_2006__23_5_753_0, author = {Colin, Mathieu and Ohta, Masahito}, title = {Stability of solitary waves for derivative nonlinear {Schr\"odinger} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {753--764}, publisher = {Elsevier}, volume = {23}, number = {5}, year = {2006}, doi = {10.1016/j.anihpc.2005.09.003}, mrnumber = {2259615}, zbl = {1104.35050}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2005.09.003/} }
TY - JOUR AU - Colin, Mathieu AU - Ohta, Masahito TI - Stability of solitary waves for derivative nonlinear Schrödinger equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 753 EP - 764 VL - 23 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2005.09.003/ DO - 10.1016/j.anihpc.2005.09.003 LA - en ID - AIHPC_2006__23_5_753_0 ER -
%0 Journal Article %A Colin, Mathieu %A Ohta, Masahito %T Stability of solitary waves for derivative nonlinear Schrödinger equation %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 753-764 %V 23 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2005.09.003/ %R 10.1016/j.anihpc.2005.09.003 %G en %F AIHPC_2006__23_5_753_0
Colin, Mathieu; Ohta, Masahito. Stability of solitary waves for derivative nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 5, pp. 753-764. doi : 10.1016/j.anihpc.2005.09.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2005.09.003/
[1] Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc. 353 (2001) 3649-3659. | MR | Zbl
, ,[2] Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris 293 (1981) 489-492. | MR | Zbl
, ,[3] A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 486-490. | MR | Zbl
, ,[4] Semilinear Schrödinger equations, Courant Lecture Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003. | MR | Zbl
,[5] Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982) 549-561. | MR | Zbl
, ,[6] Stability of Coulomb systems with magnetic fields I. The one-electron atom, Comm. Math. Phys. 104 (1986) 251-270. | MR | Zbl
, , ,[7] Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal. 74 (1987) 160-197. | MR | Zbl
, , ,[8] Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal. 94 (1990) 308-348. | MR | Zbl
, , ,[9] Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation, J. Differential Equations 123 (1995) 35-55. | MR | Zbl
, ,[10] The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal. 20 (1993) 823-833. | MR | Zbl
,[11] On the derivative nonlinear Schrödinger equation, Physica D 55 (1992) 14-36. | MR | Zbl
, ,[12] Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal. 25 (1994) 1488-1503. | MR | Zbl
, ,[13] On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math. 74 (1983) 441-448. | MR | Zbl
,[14] Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan 41 (1976) 265-271. | MR
, , , ,[15] On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys. 16 (1976) 321-334.
,[16] Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity, J. Math. Soc. Japan 46 (1994) 557-586. | MR | Zbl
,[17] Stability of standing waves for the generalized Davey-Stewartson system, J. Dynam. Differential Equations 6 (1994) 325-334. | MR | Zbl
,[18] Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity, Kodai Math. J. 18 (1995) 68-74. | MR | Zbl
,[19] Stability and instability of standing waves for the generalized Davey-Stewartson system, Differential Integral Equations 8 (1995) 1775-1788. | MR | Zbl
,[20] Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in , Ann. Inst. H. Poincaré Phys. Théor. 63 (1995) 111-117. | Numdam | MR | Zbl
,[21] On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J. 45 (1996) 137-163. | MR | Zbl
,[22] Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys. 91 (1983) 313-327. | MR | Zbl
,[23] Instability of nonlinear bound states, Comm. Math. Phys. 100 (1985) 173-190. | MR | Zbl
, ,[24] Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations 4 (1999) 561-580. | MR | Zbl
,[25] Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Differential Equations 2001 (42) (2001) 1-23. | MR | Zbl
,[26] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567-576. | MR | Zbl
,[27] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986) 51-68. | MR | Zbl
,Cité par Sources :