@article{AIHPC_2006__23_6_865_0, author = {Sz\'ekelyhidi, L\'aszl\'o}, title = {On quasiconvex hulls in symmetric $2\times 2$ matrices}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {865--876}, publisher = {Elsevier}, volume = {23}, number = {6}, year = {2006}, doi = {10.1016/j.anihpc.2005.11.001}, mrnumber = {2271698}, zbl = {05138723}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2005.11.001/} }
TY - JOUR AU - Székelyhidi, László TI - On quasiconvex hulls in symmetric $2\times 2$ matrices JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 865 EP - 876 VL - 23 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2005.11.001/ DO - 10.1016/j.anihpc.2005.11.001 LA - en ID - AIHPC_2006__23_6_865_0 ER -
%0 Journal Article %A Székelyhidi, László %T On quasiconvex hulls in symmetric $2\times 2$ matrices %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 865-876 %V 23 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2005.11.001/ %R 10.1016/j.anihpc.2005.11.001 %G en %F AIHPC_2006__23_6_865_0
Székelyhidi, László. On quasiconvex hulls in symmetric $2\times 2$ matrices. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 865-876. doi : 10.1016/j.anihpc.2005.11.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2005.11.001/
[1] Quasiregular mappings and Young measures, Proc. Roy. Soc. Edinburgh Sect. A 132 (5) (2002) 1045-1056. | MR | Zbl
, ,[2] K. Astala, T. Iwaniec, G. Martin, Pucci's conjecture and the Alexandrov inequality for elliptic PDEs in the plane, J. Reine Angew. Math., in press. | Zbl
[3] A version of the fundamental theorem for Young measures, in: PDEs and Continuum Models of Phase Transitions (Nice, 1988), Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207-215. | MR | Zbl
,[4] J.M. Ball, R.D. James, Incompatible sets of gradients and metastability, in preparation.
[5] Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987) 13-52. | MR | Zbl
, ,[6] B. Bojarski, L. D'Onofrio, T. Iwaniec, C. Sbordone, G-closed classes of elliptic operators in the complex plane, in press.
[7] Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., vol. 43, American Mathematical Society, Providence, RI, 1995. | MR | Zbl
, ,[8] Sur l’équivalence de la 1-rang convexité et de la polyconvexité des ensembles isotropiques de , C. R. Acad. Sci. Paris Sér. I Math. 331 (11) (2000) 851-856. | MR | Zbl
, ,[9] Equilibrium configurations of crystals, Arch. Rational Mech. Anal. 103 (1988) 237-277. | MR | Zbl
, ,[10] Polyconvexity equals rank-one convexity for connected isotropic sets in , C. R. Math. Acad. Sci. Paris, Ser. I 337 (4) (2003) 233-238. | MR | Zbl
, , , ,[11] Implicit partial differential equations and the constraints of nonlinear elasticity, J. Math. Pures Appl. (9) 81 (4) (2002) 311-341. | MR | Zbl
, ,[12] Variational Methods for Crystalline Microstructure - Analysis and Computation, Lecture Notes in Math., vol. 1803, Springer-Verlag, Berlin, 2003. | Zbl
,[13] Quasiconvex functions and Hessian equations, Arch. Rational Mech. Anal. 168 (3) (2003) 245-252. | MR | Zbl
, ,[14] Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag, Berlin, 2001, (Reprint of the 1998 edition). | MR | Zbl
, ,[15] Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991) 329-365. | MR | Zbl
, ,[16] Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math. 3 (1) (1992) 31-54. | MR | Zbl
,[17] Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Res. Notices 20 (1999) 1087-1095. | MR | Zbl
,[18] Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85-210. | MR | Zbl
,[19] V. Šverák, On regularity for the Monge-Ampère equations, Preprint, Heriot-Watt University, 1991.
[20] New examples of quasiconvex functions, Arch. Rational Mech. Anal. 119 (4) (1992) 293-300. | MR | Zbl
,[21] Rank-one convex hulls in , Calc. Var. Partial Differential Equations 22 (3) (2005) 253-281. | MR | Zbl
,[22] Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, MA, 1979, pp. 136-212. | MR | Zbl
,[23] On separation of gradient Young measures, Calc. Var. Partial Differential Equations 17 (1) (2003) 85-103. | MR | Zbl
,Cité par Sources :