@article{AIHPC_2006__23_6_839_0, author = {Kurta, Vasilii V.}, title = {On a {Liouville} phenomenon for entire weak supersolutions of elliptic partial differential equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {839--848}, publisher = {Elsevier}, volume = {23}, number = {6}, year = {2006}, doi = {10.1016/j.anihpc.2005.12.001}, mrnumber = {2271696}, zbl = {05138721}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2005.12.001/} }
TY - JOUR AU - Kurta, Vasilii V. TI - On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 839 EP - 848 VL - 23 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2005.12.001/ DO - 10.1016/j.anihpc.2005.12.001 LA - en ID - AIHPC_2006__23_6_839_0 ER -
%0 Journal Article %A Kurta, Vasilii V. %T On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 839-848 %V 23 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2005.12.001/ %R 10.1016/j.anihpc.2005.12.001 %G en %F AIHPC_2006__23_6_839_0
Kurta, Vasilii V. On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 839-848. doi : 10.1016/j.anihpc.2005.12.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2005.12.001/
[1] On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955/56) 309-340. | MR | Zbl
, ,[2] Subharmonic Functions, Academic Press, 1976, (284 p.). | MR | Zbl
, ,[3] Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, 1993, (363 p.). | MR | Zbl
, , ,[4] Introductory Real Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970, (403 p.). | MR | Zbl
, ,[5] About a Liouville phenomenon, C. R. Math. Acad. Sci. Paris, Ser. I 338 (2004) 19-22. | MR | Zbl
,[6] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Doctoral Dissert., Steklov Math. Inst., Moscow, 1994 (323 p.).
[7] Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Unendliche Folgen positiver Lösungen, Rend. Circ. Mat. Palermo 33 (1912) 201-211. | JFM
,[8] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969, (554 p.). | MR | Zbl
,[9] Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, MA, 1985, (Advanced Publishing Program, 344 p.). | MR | Zbl
, ,[10] Capacity and a generalized maximum principle for quasilinear equations of elliptic type, Dokl. Akad. Nauk SSSR 250 (1980) 1318-1320. | MR | Zbl
,[11] Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion, Mat. Sb. 111 (153) (1980) 42-66. | MR | Zbl
,[12] On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961) 577-591. | MR | Zbl
,[13] Mappings with bounded distortion as extremals of integrals of Dirichlet type, Sibirsk. Mat. Zh. 9 (1968) 652-666. | MR | Zbl
,[14] Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964) 247-302. | MR | Zbl
,Cité par Sources :