@article{AIHPC_2007__24_5_757_0, author = {Mazet, Laurent}, title = {Lignes de divergence pour les graphes \`a courbure moyenne constante}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {757--771}, publisher = {Elsevier}, volume = {24}, number = {5}, year = {2007}, doi = {10.1016/j.anihpc.2006.06.004}, mrnumber = {2348051}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2006.06.004/} }
TY - JOUR AU - Mazet, Laurent TI - Lignes de divergence pour les graphes à courbure moyenne constante JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 757 EP - 771 VL - 24 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2006.06.004/ DO - 10.1016/j.anihpc.2006.06.004 LA - fr ID - AIHPC_2007__24_5_757_0 ER -
%0 Journal Article %A Mazet, Laurent %T Lignes de divergence pour les graphes à courbure moyenne constante %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 757-771 %V 24 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2006.06.004/ %R 10.1016/j.anihpc.2006.06.004 %G fr %F AIHPC_2007__24_5_757_0
Mazet, Laurent. Lignes de divergence pour les graphes à courbure moyenne constante. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 5, pp. 757-771. doi : 10.1016/j.anihpc.2006.06.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2006.06.004/
[1] Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés, Bull. Soc. Math. France 119 (1991) 443-462. | Numdam | MR | Zbl
, ,[2] The Gauss curvature of an H-graph, Nachr. Akad. Wiss. Göttingen 2 (1987). | MR | Zbl
,[3] Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2001. | MR
,[4] Variational problems of minimal surface type II, Arch. Rational Mech. Anal. 21 (1966) 321-342. | MR | Zbl
, ,[5] L. Mazet, Some uniqueness results for constant mean curvature graphs, Pacific J. Math., in press. | MR | Zbl
[6] L. Mazet, Construction de surfaces minimales par résolution du problème de Dirichlet, Thèse de Doctorat, Univ. Toulouse III, 2004.
[7] The Dirichlet problem for the minimal surfaces equation and the Plateau problem at infinity, J. Inst. Math. Jussieu 3 (2004) 397-420. | MR | Zbl
,[8] The Global Theory of Minimal Surfaces in Flat Spaces, Lecture Notes in Mathematics, vol. 1775, Springer-Verlag, Berlin, 2002.
, , ,[9] The Dirichlet problem for surfaces of constant mean curvature, Proc. London Math. Soc. (3) 21 (1970) 361-384. | MR | Zbl
,[10] The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-496. | MR | Zbl
,[11] Infinite boundary value problems for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 49 (1972/73) 1-31. | MR | Zbl
,Cité par Sources :