@article{AIHPC_2008__25_2_267_0, author = {Arias, M. and Campos, J. and Cuesta, M. and Gossez, J.-P.}, title = {An asymmetric {Neumann} problem with weights}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {267--280}, publisher = {Elsevier}, volume = {25}, number = {2}, year = {2008}, doi = {10.1016/j.anihpc.2006.07.006}, mrnumber = {2396522}, zbl = {1138.35074}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2006.07.006/} }
TY - JOUR AU - Arias, M. AU - Campos, J. AU - Cuesta, M. AU - Gossez, J.-P. TI - An asymmetric Neumann problem with weights JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 267 EP - 280 VL - 25 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2006.07.006/ DO - 10.1016/j.anihpc.2006.07.006 LA - en ID - AIHPC_2008__25_2_267_0 ER -
%0 Journal Article %A Arias, M. %A Campos, J. %A Cuesta, M. %A Gossez, J.-P. %T An asymmetric Neumann problem with weights %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 267-280 %V 25 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2006.07.006/ %R 10.1016/j.anihpc.2006.07.006 %G en %F AIHPC_2008__25_2_267_0
Arias, M.; Campos, J.; Cuesta, M.; Gossez, J.-P. An asymmetric Neumann problem with weights. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 2, pp. 267-280. doi : 10.1016/j.anihpc.2006.07.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2006.07.006/
[1] A. Anane, Etude des valeurs propres et de la résonance pour l'opérateur p-laplacien, Thèse de doctorat, Université Libre de Bruxelles, Bruxelles, 1988.
[2] Asymmetric elliptic problems with indefinite weights, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 581-616. | EuDML | Numdam | MR | Zbl
, , , ,[3] Un criterio di esistenza per i punti critici su varieta ilimitate, Rc. Ist. Lomb. Sci. Lett. 112 (1978) 332-336. | Zbl
,[4] Eigenvalue problems for the p-laplacian with indefinite weight, Electronic J. Differential Equations 2001 (2001) 1-9. | EuDML | MR | Zbl
,[5] Minimax theorems on manifolds via Ekeland variational principle, Abstract Appl. Anal. 13 (2003) 757-768. | EuDML | MR | Zbl
,[6] A. Dakkak, Etude sur le spectre et la résonance pour les problèmes elliptiques de Neumann, Thèse 3ème cycle, Univ. Oujda, 1995.
[7] Lectures on the Ekeland Variational Principle with Applications and Detours, TATA Institute, Springer-Verlag, 1989. | MR | Zbl
,[8] On the variational principle, J. Math. Anal. Appl. 47 (1974) 323-353. | MR | Zbl
,[9] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. | MR | Zbl
, ,[10] On the antimaximum principle for the p-laplacian with indefinite weight, Nonlinear Anal.: Theory Methods Appl. 51 (2002) 449-467. | MR | Zbl
, , ,[11] On eigenvalue problems for the p-laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990) 177-184. | MR | Zbl
,[12] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203-1219. | MR | Zbl
,[13] Local behavior of solutions of quasilinear equations, Acta Math. 111 (1962) 247-302. | MR | Zbl
,[14] A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191-202. | MR | Zbl
,Cité par Sources :