Strong solutions for a compressible fluid model of Korteweg type
Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 679-696.
@article{AIHPC_2008__25_4_679_0,
     author = {Kotschote, Matthias},
     title = {Strong solutions for a compressible fluid model of {Korteweg} type},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {679--696},
     publisher = {Elsevier},
     volume = {25},
     number = {4},
     year = {2008},
     doi = {10.1016/j.anihpc.2007.03.005},
     mrnumber = {2436788},
     zbl = {1141.76053},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.005/}
}
TY  - JOUR
AU  - Kotschote, Matthias
TI  - Strong solutions for a compressible fluid model of Korteweg type
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 679
EP  - 696
VL  - 25
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.005/
DO  - 10.1016/j.anihpc.2007.03.005
LA  - en
ID  - AIHPC_2008__25_4_679_0
ER  - 
%0 Journal Article
%A Kotschote, Matthias
%T Strong solutions for a compressible fluid model of Korteweg type
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 679-696
%V 25
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.005/
%R 10.1016/j.anihpc.2007.03.005
%G en
%F AIHPC_2008__25_4_679_0
Kotschote, Matthias. Strong solutions for a compressible fluid model of Korteweg type. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 4, pp. 679-696. doi : 10.1016/j.anihpc.2007.03.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.005/

[1] Amann H., Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186 (1997) 5-56. | MR | Zbl

[2] Anderson D.M., Mcfadden G.B., Wheeler A.A., Diffuse-interface methods in fluid mech, Ann. Rev. Fluid Mech. 30 (1998) 139-165. | MR

[3] Bresch D., Desjardins B., Lin C., On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations 28 (3-4) (2003) 843-868. | MR | Zbl

[4] Cahn J.W., Hilliard J.E., Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys. 28 (1998) 258-267.

[5] Danchin R., Desjardins B., Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (1) (2001) 97-133. | EuDML | Numdam | MR | Zbl

[6] Denk R., Hieber M., Prüss J., R-boundedness and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (788) (2003), viii+114 pp. | MR | Zbl

[7] Dore G., Venni A., On the closedness of the sum of two closed operators, Math. Z. 196 (1987) 189-201. | EuDML | MR | Zbl

[8] Dunn J.E., Serrin J., On the thermomechanics of interstitial working, Arch. Rational Mech. Anal. 88 (2) (1985) 95-133. | MR | Zbl

[9] Escher J., Prüss J., Simonett G., A new approach to the regularity of solutions for parabolic equations, in: Evolution Equations, Lecture Notes in Pure and Appl. Math., vol. 234, Dekker, New York, 2003, pp. 167-190. | MR | Zbl

[10] Gurtin M.E., Polignone D., Vinals J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (6) (1996) 815-831. | MR | Zbl

[11] Hattori H., Li D., The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations 9 (4) (1996) 323-342. | MR | Zbl

[12] Hattori H., Li D., Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl. 198 (1) (1996) 84-97. | MR | Zbl

[13] Kalton N., Weis L., The H -calculus and sums of closed operators, Math. Ann. 321 (2) (2001) 319-345. | MR | Zbl

[14] M. Kotschote, Strong well-posedness of a model for an ionic exchange process, Thesis, Martin-Luther-Universität Halle-Wittenberg, 2003.

[15] Ladyzenskaya O.A., Solonikov V.A., Uralceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, 1968.

[16] Lancien F., Lancien G., Le Merdy C., A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. 77 (1998) 387-414. | MR | Zbl

[17] Prüss J., Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in L p -spaces, Math. Bohem. 127 (2) (2002) 311-327. | EuDML | MR | Zbl

[18] Prüss J., Sohr H., On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990) 429-452. | EuDML | MR | Zbl

[19] Sobolevskii P.E., Coerciveness inequalities for abstract parabolic equations, Soviet Math. (Doklady) 5 (1964) 894-897. | MR | Zbl

[20] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978. | MR | Zbl

[21] Triebel H., Theory of Function Spaces, Geest & Portig K.-G., Leipzig, 1983. | MR | Zbl

[22] Zacher R., Maximal regularity of type L p for abstract parabolic Volterra equations, J. Evol. Equ. 5 (1) (2005) 79-103. | MR | Zbl

[23] R. Zacher, Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, preprint. | MR | Zbl

Cité par Sources :