An Integral Equation in Conformal Geometry
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 1-21.
@article{AIHPC_2009__26_1_1_0,
     author = {Hang, Fengbo and Wang, Xiaodong and Yan, Xiaodong},
     title = {An {Integral} {Equation} in {Conformal} {Geometry}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--21},
     publisher = {Elsevier},
     volume = {26},
     number = {1},
     year = {2009},
     doi = {10.1016/j.anihpc.2007.03.006},
     mrnumber = {2483810},
     zbl = {1154.45004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.006/}
}
TY  - JOUR
AU  - Hang, Fengbo
AU  - Wang, Xiaodong
AU  - Yan, Xiaodong
TI  - An Integral Equation in Conformal Geometry
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 1
EP  - 21
VL  - 26
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.006/
DO  - 10.1016/j.anihpc.2007.03.006
LA  - en
ID  - AIHPC_2009__26_1_1_0
ER  - 
%0 Journal Article
%A Hang, Fengbo
%A Wang, Xiaodong
%A Yan, Xiaodong
%T An Integral Equation in Conformal Geometry
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 1-21
%V 26
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.006/
%R 10.1016/j.anihpc.2007.03.006
%G en
%F AIHPC_2009__26_1_1_0
Hang, Fengbo; Wang, Xiaodong; Yan, Xiaodong. An Integral Equation in Conformal Geometry. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 1-21. doi : 10.1016/j.anihpc.2007.03.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2007.03.006/

[1] Adams R. A., Sobolev Spaces, Pure and Applied Mathematics, vol. 65, second ed., Academic Press, New York-London, 2003. | MR | Zbl

[2] Baernstein A., Taylor B. A., Spherical Rearrangements, Sub-Harmonic Functions and *-Functions in N-Space, Duke Math. J. 43 (1976) 245-268. | MR | Zbl

[3] Carleman T., Zur Theorie Der Minimalflächen, Math. Z. 9 (1921) 154-160. | EuDML | JFM | MR

[4] Escobar J. F., The Yamabe Problem on Manifolds With Boundary, J. Differential Geom. 35 (1) (1992) 21-84. | MR | Zbl

[5] Escobar J. F., Conformal Deformation of a Riemannian Metric to a Scalar Flat Metric With Constant Mean Curvature on the Boundary, Ann. of Math. (2) 136 (1) (1992) 1-50. | MR | Zbl

[6] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, second ed., third printing, Springer-Verlag, Berlin, 1998. | Zbl

[7] F.B. Hang, X.D. Wang, X.D. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math., in press. | MR | Zbl

[8] S. Jacobs, An isoperimetric inequality for functions analytic in multiply connected domains, Mittag-Leffler Institute report, 1972.

[9] Lee J. M., Parker T. H., The Yamabe Problem, Bull. Amer. Math. Soc. (N.S.) 17 (1) (1987) 37-91. | MR | Zbl

[10] Lions P. L., The Concentration-Compactness Principle in the Calculus of Variations. the Limit Case. II, Rev. Mat. Iberoamericana 1 (2) (1985) 45-121. | MR | Zbl

[11] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, 1971. | MR | Zbl

Cité par Sources :