@article{AIHPC_2009__26_2_599_0, author = {Chemin, Jean-Yves and Gallagher, Isabelle}, title = {Wellposedness and {Stability} {Results} for the {Navier-Stokes} {Equations} in $\mathbf {R}^3$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {599--624}, publisher = {Elsevier}, volume = {26}, number = {2}, year = {2009}, doi = {10.1016/j.anihpc.2007.05.008}, mrnumber = {2504045}, zbl = {1165.35038}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.05.008/} }
TY - JOUR AU - Chemin, Jean-Yves AU - Gallagher, Isabelle TI - Wellposedness and Stability Results for the Navier-Stokes Equations in $\mathbf {R}^3$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 599 EP - 624 VL - 26 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.05.008/ DO - 10.1016/j.anihpc.2007.05.008 LA - en ID - AIHPC_2009__26_2_599_0 ER -
%0 Journal Article %A Chemin, Jean-Yves %A Gallagher, Isabelle %T Wellposedness and Stability Results for the Navier-Stokes Equations in $\mathbf {R}^3$ %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 599-624 %V 26 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.05.008/ %R 10.1016/j.anihpc.2007.05.008 %G en %F AIHPC_2009__26_2_599_0
Chemin, Jean-Yves; Gallagher, Isabelle. Wellposedness and Stability Results for the Navier-Stokes Equations in $\mathbf {R}^3$. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 599-624. doi : 10.1016/j.anihpc.2007.05.008. https://www.numdam.org/articles/10.1016/j.anihpc.2007.05.008/
[1] On the Stability of Global Solutions to Navier-Stokes Equations in the Space, Journal de Mathématiaques Pures et Appliquées 83 (2004) 673-697. | MR | Zbl
, , ,[2] Refined Hardy Inequalities, Annali di Scuola Normale di Pisa, Classe di Scienze, Serie V 5 (2006) 375-391. | Numdam | MR | Zbl
, , ,[3] High Frequency Approximation of Solutions to Critical Nonlinear Wave Equations, American Journal of Mathematics 121 (1999) 131-175. | MR | Zbl
, ,[4] M. Cannone, Y. Meyer, F. Planchon, Solutions autosimilaires des équations de Navier-Stokes, Séminaire “Équations aux Dérivées Partielles” de l'École polytechnique, Exposé VIII, 1993-1994. | Numdam | MR | Zbl
[5] Fluides Parfaits Incompressibles, Astérisque, vol. 230, 1995, English translation: J.-Y. Chemin, Perfect Incompressible Fluids, Oxford University Press, 1998. | Numdam | MR | Zbl
,[6] Théorèmes D'unicité Pour Le Système De Navier-Stokes Tridimensionnel, Journal d'Analyse Mathématique 77 (1999) 27-50. | MR | Zbl
,[7] J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, in: Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Normale di Pisa, pp. 53-136. | MR | Zbl
[8] On the Global Wellposedness of the 3-D Navier-Stokes Equations With Large Initial Data, Annales Scientifiques de l'École Normale Supérieure de Paris 39 (4) (2006) 679-698. | Numdam | MR | Zbl
, ,
[9] Asymptotic Behaviour, as
[10] On the Navier-Stokes Initial Value Problem I, Archive for Rational Mechanics and Analysis 16 (1964) 269-315. | MR | Zbl
, ,[11] The Tridimensional Navier-Stokes Equations With Almost Bidimensional Data: Stability, Uniqueness and Life Span, International Mathematical Research Notices 18 (1997) 919-935. | MR | Zbl
,[12] Profile Decomposition for the Navier-Stokes Equations, Bulletin de la Société Mathématique de France 129 (2001) 285-316. | Numdam | MR | Zbl
,[13] Asymptotics and Stability for Global Solutions to the Navier-Stokes Equations, Annales de l'Institut Fourier 53 (5) (2003) 1387-1424. | Numdam | MR | Zbl
, , ,[14] Description Du Défaut De Compacité De L'injection De Sobolev, ESAIM Contrôle Optimal et Calcul des Variations 3 (1998) 213-233. | Numdam | MR | Zbl
,
[15] Solutions in
[16] The 3D Navier-Stokes Equations Seen as a Perturbation of the 2D Navier-Stokes Equations, Bulletin de la Société Mathématique de France 127 (1999) 473-517. | Numdam | MR | Zbl
,
[17] Strong
[18] Well-Posedness for the Navier-Stokes Equations, Advances in Mathematics 157 (2001) 22-35. | MR | Zbl
, ,[19] The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, vol. 2, Second English edition, revised and enlarged, Gordon and Breach, Science Publishers, New York-London-Paris, 1969, xviii+224 pp. | MR | Zbl
,[20] Invariant Helical Subspaces for the Navier-Stokes Equations, Archive for Rational Mechanics and Analysis 112 (3) (1990) 193-222. | MR | Zbl
, , ,[21] Recent Developments in the Navier-Stokes Problem, Research Notes in Mathematics, vol. 431, Chapman & Hall/CRC, 2002. | MR | Zbl
,[22] Essai Sur Le Mouvement D'un Liquide Visqueux Emplissant L'espace, Acta Matematica 63 (1933) 193-248. | JFM | MR
,[23] Global Stability of Large Solutions to the 3D Navier-Stokes Equations, Communitacions in Mathematical Physics 159 (1994). | MR | Zbl
, , , ,[24] Axially Symmetric Flows of Ideal and Viscous Fluids Filling the Whole Space, Prikladnaya Matematika i Mekhanika 32 (1968) 59-69, (in Russian); translated as, Journal of Applied Mathematics and Mechanics 32 (1968) 52-61. | MR | Zbl
, ,- On almost axisymmetric incompressible magnetohydrodynamics in three dimensions, Acta Mathematica Scientia, Volume 45 (2025) no. 2, p. 446 | DOI:10.1007/s10473-025-0210-y
- Gevrey regularity for the subcritical dissipative generalized surface quasi-geostrophic equations, Mathematische Zeitschrift, Volume 309 (2025) no. 4 | DOI:10.1007/s00209-025-03692-z
- Global existence of large solutions for the parabolic–elliptic Keller–Segel system in Besov type spaces, Applied Mathematics Letters, Volume 149 (2024), p. 108899 | DOI:10.1016/j.aml.2023.108899
- Analyticity estimates for the 3D magnetohydrodynamic equations, Electronic Research Archive, Volume 32 (2024) no. 6, p. 3819 | DOI:10.3934/era.2024173
- Localization of Beltrami fields: Global smooth solutions and vortex reconnection for the Navier-Stokes equations, Journal of Functional Analysis, Volume 287 (2024) no. 9, p. 110610 | DOI:10.1016/j.jfa.2024.110610
- Global existence of solutions for the drift–diffusion system with large initial data in Ḃ−2∞,∞ (Rd), Nonlinear Analysis: Real World Applications, Volume 80 (2024), p. 104145 | DOI:10.1016/j.nonrwa.2024.104145
- Large global solutions to 3D Boussinesq equations slowly varying in one direction, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 3 | DOI:10.1007/s00033-024-02228-5
- Global Solutions to the 2D Compressible Navier-Stokes Equations with Some Large Initial Data, Acta Mathematica Scientia, Volume 43 (2023) no. 3, p. 1251 | DOI:10.1007/s10473-023-0315-0
- Smooth solution for incompressible Navier–Stokes equations with large initial, Applicable Analysis, Volume 102 (2023) no. 10, p. 2866 | DOI:10.1080/00036811.2022.2040995
- Large global solutions of the compressible Navier-Stokes equations in three dimensions, Discrete and Continuous Dynamical Systems, Volume 43 (2023) no. 1, p. 309 | DOI:10.3934/dcds.2022150
- Middle frequency band and remark on Koch–Tataru’s iteration space, International Journal of Wavelets, Multiresolution and Information Processing, Volume 21 (2023) no. 04 | DOI:10.1142/s0219691323500030
- Distribution of large value points via frequency and wellposedness of Navier-Stokes equations, Journal of Differential Equations, Volume 376 (2023), p. 574 | DOI:10.1016/j.jde.2023.08.036
- The Global Solvability of the Non-conservative Viscous Compressible Two-Fluid Model with Capillarity Effects for Some Large Initial Data, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 3 | DOI:10.1007/s00021-023-00797-5
- On the instantaneous radius of analyticity of
solutions to 3D Navier–Stokes system, Mathematische Zeitschrift, Volume 304 (2023) no. 3 | DOI:10.1007/s00209-023-03301-x - The Continuous Dependence for the Navier–Stokes Equations in
, Results in Mathematics, Volume 78 (2023) no. 6 | DOI:10.1007/s00025-023-02004-3 - Global solutions to 3D incompressible Navier–Stokes equations with some large initial data, Applied Mathematics Letters, Volume 129 (2022), p. 107954 | DOI:10.1016/j.aml.2022.107954
- On the Radius of Analyticity of Solutions to 3D Navier-Stokes System with Initial Data in Lp, Chinese Annals of Mathematics, Series B, Volume 43 (2022) no. 5, p. 749 | DOI:10.1007/s11401-022-0356-z
- On the global existence to Hall-MHD system, Discrete and Continuous Dynamical Systems - B, Volume 27 (2022) no. 12, p. 7301 | DOI:10.3934/dcdsb.2022044
- A class of global large, smooth solutions for the magnetohydrodynamics with Hall and ion‐slip effects, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 10, p. 5721 | DOI:10.1002/mma.8136
- Local and some type of large solutions for the chemotaxis-fluid equations with partial dissipation, Nonlinear Analysis, Volume 217 (2022), p. 112746 | DOI:10.1016/j.na.2021.112746
- Well-posedness for chemotaxis–fluid models in arbitrary dimensions*, Nonlinearity, Volume 35 (2022) no. 12, p. 6241 | DOI:10.1088/1361-6544/ac98ec
- Global Axisymmetric Solutions to the 3D MHD Equations with Nonzero Swirl, The Journal of Geometric Analysis, Volume 32 (2022) no. 10 | DOI:10.1007/s12220-022-01006-x
- Global Large Solutions to the 3-D Generalized Incompressible Navier–Stokes Equations, Bulletin of the Malaysian Mathematical Sciences Society, Volume 44 (2021) no. 4, p. 2101 | DOI:10.1007/s40840-020-01051-1
- From Jean Leray to the millennium problem: the Navier–Stokes equations, Journal of Evolution Equations, Volume 21 (2021) no. 3, p. 3243 | DOI:10.1007/s00028-020-00645-3
- Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces, Open Mathematics, Volume 19 (2021) no. 1, p. 898 | DOI:10.1515/math-2021-0060
- Approximate controllability for mild solution of time-fractional Navier–Stokes equations with delay, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 3 | DOI:10.1007/s00033-021-01542-6
- Long-time behaviors for the Navier–Stokes equations under large initial perturbation, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 4 | DOI:10.1007/s00033-021-01569-9
- Blow-Up Criterion and Examples of Global Solutions of Forced Navier-Stokes Equations, Acta Applicandae Mathematicae, Volume 170 (2020) no. 1, p. 99 | DOI:10.1007/s10440-020-00326-w
- On some large global solutions to the incompressible inhomogeneous nematic liquid crystal flows, Applicable Analysis, Volume 99 (2020) no. 6, p. 959 | DOI:10.1080/00036811.2018.1515923
- Global Well-Posedness of the Generalized Incompressible Navier–Stokes Equations with Large Initial Data, Bulletin of the Malaysian Mathematical Sciences Society, Volume 43 (2020) no. 3, p. 2549 | DOI:10.1007/s40840-019-00818-5
- A class of global large solutions to the compressible Navier–Stokes–Korteweg system in critical Besov spaces, Journal of Evolution Equations, Volume 20 (2020) no. 4, p. 1531 | DOI:10.1007/s00028-020-00565-2
- Long time decay of 3D-NSE in Lei-Lin-Gevrey spaces, Mathematica Slovaca, Volume 70 (2020) no. 4, p. 877 | DOI:10.1515/ms-2017-0400
- Global existence and analyticity of mild solutions for the stochastic Navier–Stokes–Coriolis equations in Besov spaces, Nonlinear Analysis: Real World Applications, Volume 52 (2020), p. 103048 | DOI:10.1016/j.nonrwa.2019.103048
- Global Large Solutions to the Three Dimensional Compressible Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 2, p. 1806 | DOI:10.1137/19m1265843
- Analysis of time fractional and space nonlocal stochastic incompressible Navier–Stokes equation driven by white noise, Computers Mathematics with Applications, Volume 78 (2019) no. 5, p. 1669 | DOI:10.1016/j.camwa.2018.12.022
- Navier-Stokes equations in the whole space with an eddy viscosity, Journal of Mathematical Analysis and Applications, Volume 478 (2019) no. 2, p. 698 | DOI:10.1016/j.jmaa.2019.05.051
- Global Well-Posedness and Time-Decay Estimates of the Compressible Navier–Stokes–Korteweg System in Critical Besov Spaces, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 2 | DOI:10.1007/s00021-019-0431-8
- A nonlinear estimate of the life span of solutions of the three dimensional Navier–Stokes equations, Tunisian Journal of Mathematics, Volume 1 (2019) no. 2, p. 273 | DOI:10.2140/tunis.2019.1.273
- Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier–Besov spaces, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 6 | DOI:10.1007/s00033-019-1210-3
- Exact solutions for the Cauchy problem to the 3D spherically symmetric incompressible Navier-Stokes equations, Acta Mathematica Scientia, Volume 38 (2018) no. 3, p. 778 | DOI:10.1016/s0252-9602(18)30783-5
- Global Mild Solution of Stochastic Generalized Navier–Stokes Equations with Coriolis Force, Acta Mathematica Sinica, English Series, Volume 34 (2018) no. 11, p. 1635 | DOI:10.1007/s10114-018-7482-2
- Global well-posedness of the 3D generalized rotating magnetohydrodynamics equations, Acta Mathematica Sinica, English Series, Volume 34 (2018) no. 6, p. 992 | DOI:10.1007/s10114-017-7276-y
- Well-posedness and decay of solutions for three-dimensional generalized Navier–Stokes equations, Computers Mathematics with Applications, Volume 76 (2018) no. 5, p. 1026 | DOI:10.1016/j.camwa.2018.05.038
- Large Time Behavior of the Navier-Stokes Flow, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 579 | DOI:10.1007/978-3-319-13344-7_11
- Critical Function Spaces for the Well-Posedness of the Navier-Stokes Initial Value Problem, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), p. 647 | DOI:10.1007/978-3-319-13344-7_12
- Stability Properties of the Regular Set for the Navier–Stokes Equation, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 2, p. 819 | DOI:10.1007/s00021-017-0349-y
- Global Well-Posedness and Temporal Decay Estimates for the 3D Nematic Liquid Crystal Flows, Journal of Mathematical Fluid Mechanics, Volume 20 (2018) no. 4, p. 1459 | DOI:10.1007/s00021-018-0373-6
- Global solutions for the 3-D incompressible nonhomogeneous MHD equations, Nonlinear Analysis, Volume 169 (2018), p. 163 | DOI:10.1016/j.na.2017.12.011
- Global existence of strong solution for viscous shallow water system with large initial data on the irrotational part, Journal of Differential Equations, Volume 262 (2017) no. 10, p. 4931 | DOI:10.1016/j.jde.2017.01.010
- Global well-posedness and long time decay of the 3D Boussinesq equations, Journal of Differential Equations, Volume 263 (2017) no. 12, p. 8649 | DOI:10.1016/j.jde.2017.08.049
- Global Solution to the Incompressible Inhomogeneous Navier–Stokes Equations with Some Large Initial Data, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 2, p. 315 | DOI:10.1007/s00021-016-0282-5
- Asymptotic behavior of exact solutions for the Cauchy problem to the 3D cylindrically symmetric Navier–Stokes equations, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 12, p. 4538 | DOI:10.1002/mma.4324
- Global solutions to Keller‐Segel‐Navier‐Stokes equations with a class of large initial data in critical Besov spaces, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, p. 7425 | DOI:10.1002/mma.4538
- Global well posedness of 3D‐NSE in Fourier–Lei–Lin spaces, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 7, p. 2713 | DOI:10.1002/mma.4193
- Large Time Behavior of the Navier–Stokes Flow, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_11-1
- Critical Function Spaces for the Wellposedness of the Navier-Stokes Initial Value Problem, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2016), p. 1 | DOI:10.1007/978-3-319-10151-4_12-1
- From an Initial Data to a Global Solution of the Non-linear Schrödinger Equation: A Building Process, International Mathematics Research Notices, Volume 2016 (2016) no. 8, p. 2376 | DOI:10.1093/imrn/rnv199
- Global smooth solutions of MHD equations with large data, Journal of Differential Equations, Volume 261 (2016) no. 1, p. 102 | DOI:10.1016/j.jde.2016.03.002
- Existence of global strong solution for Korteweg system with large infinite energy initial data, Journal of Mathematical Analysis and Applications, Volume 438 (2016) no. 1, p. 395 | DOI:10.1016/j.jmaa.2016.01.047
- Stability of two-dimensional solutions to the Navier–Stokes equations in cylindrical domains under Navier boundary conditions, Journal of Mathematical Analysis and Applications, Volume 444 (2016) no. 1, p. 275 | DOI:10.1016/j.jmaa.2016.05.059
- Well-posedness for compressible MHD systems with highly oscillating initial data, Journal of Mathematical Physics, Volume 57 (2016) no. 8 | DOI:10.1063/1.4961157
- On the size of the regular set of suitable weak solutions of the Navier–Stokes equation, Journées équations aux dérivées partielles (2016), p. 1 | DOI:10.5802/jedp.634
- Stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations, Nonlinear Analysis: Real World Applications, Volume 30 (2016), p. 41 | DOI:10.1016/j.nonrwa.2015.10.011
- The Kolmogorov Law of Turbulence What Can Rigorously Be Proved? Part II, The Foundations of Chaos Revisited: From Poincaré to Recent Advancements (2016), p. 71 | DOI:10.1007/978-3-319-29701-9_5
- Bibliography, The Navier-Stokes Problem in the 21st Century (2016), p. 677 | DOI:10.1201/b19556-23
- Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 6, p. 2945 | DOI:10.3934/dcds.2016.36.2945
- Long time decay to the Lei–Lin solution of 3D Navier–Stokes equations, Journal of Mathematical Analysis and Applications, Volume 422 (2015) no. 1, p. 424 | DOI:10.1016/j.jmaa.2014.08.039
- Global solution of 3D incompressible magnetohydrodynamics equations with finite energy, Journal of Mathematical Analysis and Applications, Volume 422 (2015) no. 1, p. 571 | DOI:10.1016/j.jmaa.2014.09.003
- Stability of two-dimensional Navier–Stokes motions in the periodic case, Journal of Mathematical Analysis and Applications, Volume 423 (2015) no. 2, p. 956 | DOI:10.1016/j.jmaa.2014.10.026
- Global Wellposedness for a Certain Class of Large Initial Data for the 3D Navier–Stokes Equations, Annales Henri Poincaré, Volume 15 (2014) no. 4, p. 633 | DOI:10.1007/s00023-013-0255-7
- Global Axisymmetric Solutions to Three-Dimensional Navier–Stokes System, International Mathematics Research Notices, Volume 2014 (2014) no. 3, p. 610 | DOI:10.1093/imrn/rns232
- Global well-posedness for 3D Navier–Stokes equations with ill-prepared initial data, Journal of the Institute of Mathematics of Jussieu, Volume 13 (2014) no. 2, p. 395 | DOI:10.1017/s1474748013000212
- Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Analysis: Real World Applications, Volume 17 (2014), p. 245 | DOI:10.1016/j.nonrwa.2013.12.002
- Global strong solutions for equations related to the incompressible viscoelastic fluids with a class of large initial data, Nonlinear Analysis: Theory, Methods Applications, Volume 100 (2014), p. 59 | DOI:10.1016/j.na.2014.01.014
- Localisation and compactness properties of the Navier–Stokes global regularity problem, Analysis PDE, Volume 6 (2013) no. 1, p. 25 | DOI:10.2140/apde.2013.6.25
- On the Stability in Weak Topology of the Set of Global Solutions to the Navier–Stokes Equations, Archive for Rational Mechanics and Analysis, Volume 209 (2013) no. 2, p. 569 | DOI:10.1007/s00205-013-0623-y
- Existence of global strong solutions for the barotropic Navier–Stokes system with large initial data on the rotational part of the velocity, Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, p. 487 | DOI:10.1016/j.crma.2012.04.017
- Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system, Journal of Functional Analysis, Volume 262 (2012) no. 8, p. 3556 | DOI:10.1016/j.jfa.2012.01.022
- Large global well‐posedness of the three‐dimensional magneto‐hydrodynamic equations with the initial data of the type ‘v + w’, Mathematical Methods in the Applied Sciences, Volume 35 (2012) no. 17, p. 2036 | DOI:10.1002/mma.2634
- Global Existence of Strong Solution for Equations Related to the Incompressible Viscoelastic Fluids in the Critical
Framework, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 4, p. 2266 | DOI:10.1137/110851742 - Global regularity for the Navier–Stokes equations with some classes of large initial data, Analysis PDE, Volume 4 (2011) no. 1, p. 95 | DOI:10.2140/apde.2011.4.95
- Global regularity for some classes of large solutions to the Navier-Stokes equations, Annals of Mathematics, Volume 173 (2011) no. 2, p. 983 | DOI:10.4007/annals.2011.173.2.9
- Global mild solutions of Navier‐Stokes equations, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 9, p. 1297 | DOI:10.1002/cpa.20361
- On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Continuous Dynamical Systems - A, Volume 29 (2011) no. 3, p. 737 | DOI:10.3934/dcds.2011.29.737
- Global well-posedness for the Navier–Stokes–Boussinesq system with axisymmetric data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 27 (2010) no. 5, p. 1227 | DOI:10.1016/j.anihpc.2010.06.001
- Global Wellposed Problem for the 3-D Incompressible Anisotropic Navier-Stokes Equations in an Anisotropic Space, Communications in Mathematical Physics, Volume 287 (2009) no. 1, p. 211 | DOI:10.1007/s00220-008-0631-1
- Global wellposed problem for the 3-D incompressible anisotropic Navier–Stokes equations, Journal de Mathématiques Pures et Appliquées, Volume 90 (2008) no. 5, p. 413 | DOI:10.1016/j.matpur.2008.06.008
Cité par 87 documents. Sources : Crossref