A Variational Approach to the Local Character of G-Closure : the Convex Case
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 351-373.
@article{AIHPC_2009__26_2_351_0,
     author = {Babadjian, Jean-Fran\c{c}Ois and Barchiesi, Marco},
     title = {A {Variational} {Approach} to the {Local} {Character} of $G${-Closure} : the {Convex} {Case}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {351--373},
     publisher = {Elsevier},
     volume = {26},
     number = {2},
     year = {2009},
     doi = {10.1016/j.anihpc.2007.08.002},
     zbl = {1173.35012},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2007.08.002/}
}
TY  - JOUR
AU  - Babadjian, Jean-FrançOis
AU  - Barchiesi, Marco
TI  - A Variational Approach to the Local Character of $G$-Closure : the Convex Case
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 351
EP  - 373
VL  - 26
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2007.08.002/
DO  - 10.1016/j.anihpc.2007.08.002
LA  - en
ID  - AIHPC_2009__26_2_351_0
ER  - 
%0 Journal Article
%A Babadjian, Jean-FrançOis
%A Barchiesi, Marco
%T A Variational Approach to the Local Character of $G$-Closure : the Convex Case
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 351-373
%V 26
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2007.08.002/
%R 10.1016/j.anihpc.2007.08.002
%G en
%F AIHPC_2009__26_2_351_0
Babadjian, Jean-FrançOis; Barchiesi, Marco. A Variational Approach to the Local Character of $G$-Closure : the Convex Case. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 351-373. doi : 10.1016/j.anihpc.2007.08.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2007.08.002/

[1] Acerbi E., Fusco N., Semicontinuity Problems in the Calculus of Variations, Arch. Rational Mech. Anal. 86 (1984) 125-145. | MR | Zbl

[2] Allaire G., Shape Optimization by the Homogenization Method, Lecture Series in Mathematics and its Applications, vol. 146, Springer, Berlin, 2002. | MR | Zbl

[3] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. | MR | Zbl

[4] Aumann R. J., Hart S., Bi-Convexity and Bi-Martingales, Israel J. Math. 54 (1986) 159-180. | MR | Zbl

[5] Ball J. M., A Version of the Fundamental Theorem for Young Measures, in: PDEs and Continuum Models of Phase Transition, Nice, 1988, Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 207-215. | MR | Zbl

[6] Ball J. M., James R. D., Fine Phase Mixtures as Minimizers of Energy, Arch. Rational Mech. Anal. 100 (1987) 13-52. | MR | Zbl

[7] Ball J. M., James R. D., Proposed Experimental Tests of a Theory of Fine Microstructure and the Two-Well Problem, Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. | Zbl

[8] Barchiesi M., Multiscale Homogenization of Convex Functionals With Discontinuous Integrand, J. Convex Anal. 14 (2007) 205-226. | MR | Zbl

[9] Barchiesi M., Loss of Polyconvexity by Homogenization: a New Example, Calc. Var. Partial Differential Equations 30 (2007) 215-230. | MR | Zbl

[10] Bhattacharya K., Firoozye N., James R. D., Kohn R., Restrictions on Microstructure, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843-878. | MR | Zbl

[11] Braides A., Homogenization of Some Almost Periodic Coercive Functional, Rend. Accad. Naz. Sci. XL. Mem. Mat. 9 (5) (1985) 313-321. | MR | Zbl

[12] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, vol. 12, The Clarendon Press, Oxford University Press, New York, 1998. | MR | Zbl

[13] Braides A., A Handbook of Γ-Convergence, in: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 3, Elsevier, Amsterdam, 2006, pp. 101-213.

[14] Briane M., Casado-Díaz J., Lack of Compactness in Two-Scale Convergence, SIAM J. Math. Anal. 37 (2005) 343-346. | MR | Zbl

[15] Casadio Tarabusi E., An Algebraic Characterization of Quasi-Convex Functions, Ricerche Mat. 42 (1993) 11-24. | MR | Zbl

[16] Chiadò Piat V., Dal Maso G., Defranceschi A., G-Convergence of Monotone Operators, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 123-160. | Numdam | MR | Zbl

[17] Chlebík M., Kirchheim B., Rigidity for the Four Gradient Problem, J. Reine Angew. Math. 551 (2002) 1-9. | MR | Zbl

[18] Dacorogna B., Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, vol. 78, Springer, Berlin, 1989. | MR | Zbl

[19] Dal Maso G., An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston Inc., Boston, MA, 1993. | MR | Zbl

[20] Ekeland I., Temam R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999, English edition. | MR | Zbl

[21] Fonseca I., Francfort G. A., Relaxation in BV Versus Quasiconvexification in W 1,p ; a Model for the Interaction Between Fracture and Damage, Calc. Var. Partial Differential Equations 3 (1995) 407-446. | MR | Zbl

[22] Fonseca I., Müller S., Pedregal P., Analysis of Concentration and Oscillation Effects Generated by Gradients, SIAM J. Math. Anal. 29 (1998) 736-756. | MR | Zbl

[23] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105, Princeton Univ. Press, Princeton, 1983. | MR | Zbl

[24] Gloria A., An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies, Multiscale Model. Simul. 3 (2006) 996-1043. | MR | Zbl

[25] B. Kirchheim, Rigidity and Geometry of Microstructures, Habilitation thesis, University of Leipzig, 2003 (Lecture notes 16/2003 Max Planck Institute).

[26] Kirchheim B., Müller S., Šverák V., Studying Nonlinear Pde by Geometry in Matrix Space, in: Geometric Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, 2003, pp. 347-395. | MR

[27] Lukkassen D., Nguetseng G., Wall P., Two Scale Convergence, Int. J. Pure Appl. Math. 2 (2002) 35-86. | MR | Zbl

[28] Lurie K. A., Cherkaev A. V., Exact Estimates of the Conductivity of a Binary Mixture of Isotropic Materials, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986) 21-38. | MR | Zbl

[29] Milton G. W., The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, vol. 6, Cambridge University Press, Cambridge, 2002. | MR | Zbl

[30] Milton G. W., Nesi V., Polycrystalline Configurations That Maximize Electrical Resistivity, J. Mech. Phys. Solids 39 (1991) 525-542. | MR | Zbl

[31] Müller S., Homogenization of Nonconvex Integral Functionals and Cellular Elastic Materials, Arch. Rational Mech. Anal. 99 (1987) 189-212. | MR | Zbl

[32] Müller S., Variational Models for Microstructure and Phase Transitions, in: Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996, Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85-210. | MR | Zbl

[33] Murat F., Tartar L., H-Convergence, in: Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31, Birkhäuser Boston Inc., Boston, 1997, pp. 21-43. | MR | Zbl

[34] Pedregal P., Parametrized Measures and Variational Principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30, Birkhäuser Boston Inc., Boston, 1997. | MR | Zbl

[35] Raitums U., On the Local Representation of G-Closure, Arch. Rational Mech. Anal. 158 (2001) 213-234. | MR | Zbl

[36] V. Scheffer, Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities, Dissertation, Princeton University, 1974.

[37] Székelyhidi L., Rank-One Convex Hulls in M 2×2 , Calc. Var. Partial Differential Equations 22 (2005) 253-281. | MR | Zbl

[38] Tartar L., Estimations Fines Des Coefficients Homogénéisés, in: Kree P. (Ed.), Ennio De Giorgi Colloquium, Res. Notes in Math., vol. 125, Pitman, Boston, 1985, pp. 168-187. | MR | Zbl

[39] Tartar L., Some Remarks on Separately Convex Functions, in: Microstructure and Phase Transition, The IMA Vol. Math. Appl., vol. 54, Springer-Verlag, New York, 1993, pp. 191-204. | MR | Zbl

[40] Tartar L., An Introduction to the Homogenization Method in Optimal Design, in: Optimal Shape Design, Tróia, 1998, Lecture Notes in Math., vol. 1740, Springer, Berlin, 2000, pp. 47-156. | MR | Zbl

[41] Visintin A., Two-Scale Convergence of Some Integral Functionals, Calc. Var. Partial Differential Equation 29 (2007) 239-265. | MR | Zbl

Cité par Sources :