A general class of phase transition models with weighted interface energy
Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 6, pp. 1111-1143.
@article{AIHPC_2008__25_6_1111_0,
     author = {Acerbi, E. and Bouchitt\'e, G.},
     title = {A general class of phase transition models with weighted interface energy},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1111--1143},
     publisher = {Elsevier},
     volume = {25},
     number = {6},
     year = {2008},
     doi = {10.1016/j.anihpc.2007.09.004},
     mrnumber = {2466324},
     zbl = {1169.35367},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.004/}
}
TY  - JOUR
AU  - Acerbi, E.
AU  - Bouchitté, G.
TI  - A general class of phase transition models with weighted interface energy
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2008
SP  - 1111
EP  - 1143
VL  - 25
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.004/
DO  - 10.1016/j.anihpc.2007.09.004
LA  - en
ID  - AIHPC_2008__25_6_1111_0
ER  - 
%0 Journal Article
%A Acerbi, E.
%A Bouchitté, G.
%T A general class of phase transition models with weighted interface energy
%J Annales de l'I.H.P. Analyse non linéaire
%D 2008
%P 1111-1143
%V 25
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.004/
%R 10.1016/j.anihpc.2007.09.004
%G en
%F AIHPC_2008__25_6_1111_0
Acerbi, E.; Bouchitté, G. A general class of phase transition models with weighted interface energy. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 6, pp. 1111-1143. doi : 10.1016/j.anihpc.2007.09.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.004/

[1] Bouchitté G., Singular perturbation of variational problems arising from a two-phase transition model, Appl. Math. Optim. 21 (1990) 289-314. | MR | Zbl

[2] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., vol. 580, Springer, Berlin, Heidelberg, 1977. | MR | Zbl

[3] Chen K., Jayaprakash C., Pandit R., Wenzel W., Microemulsions: a Landau-Ginzburg theory, Phys. Rev. Lett. 65 (1990) 2736-2739.

[4] Ciach A., Hołyst R., Periodic surfaces and cubic phases in mixtures of oil, water and surfactant, J. Chem. Phys. 110 (1999) 3207-3214.

[5] Fonseca I., Morini M., Slastikov V., Surfactant in foam stability: a phase field model, Arch. Ration. Mech. Anal. 183 (3) (2007) 411-456. | MR | Zbl

[6] Gompper G., Klein S., Ginzburg-Landau theory of aqueous surfactant solutions, J. Phys. II (France) 2 (1992) 1725-1744.

[7] Hiai F., Umegaki H., Integrals, conditional expectations and martingales functions, J. Multivariate Anal. 7 (1977) 149-182. | MR | Zbl

[8] Komura S., Kodama H., Two-order-parameter model for an oil-water-surfactant system, Phys. Rev. E 55 (1997) 1722-1727.

[9] Laradji M., Guo H., Grant M., Zuckermann M.J., Dynamics of phase separation in the presence of surfactants, J. Phys. A: Math. Gen. 24 (1991) L629-L635.

[10] Laradji M., Guo H., Grant M., Zuckermann M.J., Effect of surfactants on the dynamics of phase separation, J. Phys. Condens. Matter 4 (1992) 6715-6728.

[11] Modica L., The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal. 98 (2) (1987) 123-142. | MR | Zbl

[12] Teramoto T., Yonezawa F., Droplet growth dynamics in a water/oil/surfactant system, J. Colloid Interface Sci. 235 (2001) 329-333.

Cité par Sources :