@article{AIHPC_2009__26_2_521_0, author = {Wolansky, G.}, title = {Minimizers of {Dirichlet} {Functionals} on the $n${-Torus} and the {Weak} {KAM} {Theory}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {521--545}, publisher = {Elsevier}, volume = {26}, number = {2}, year = {2009}, doi = {10.1016/j.anihpc.2007.09.007}, zbl = {1173.35047}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.007/} }
TY - JOUR AU - Wolansky, G. TI - Minimizers of Dirichlet Functionals on the $n$-Torus and the Weak KAM Theory JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 521 EP - 545 VL - 26 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.007/ DO - 10.1016/j.anihpc.2007.09.007 LA - en ID - AIHPC_2009__26_2_521_0 ER -
%0 Journal Article %A Wolansky, G. %T Minimizers of Dirichlet Functionals on the $n$-Torus and the Weak KAM Theory %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 521-545 %V 26 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.007/ %R 10.1016/j.anihpc.2007.09.007 %G en %F AIHPC_2009__26_2_521_0
Wolansky, G. Minimizers of Dirichlet Functionals on the $n$-Torus and the Weak KAM Theory. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 521-545. doi : 10.1016/j.anihpc.2007.09.007. http://archive.numdam.org/articles/10.1016/j.anihpc.2007.09.007/
[1] A Variational Approach to the Schrödinger-Poisson System: Asymptotic Behaviour, Breathers, and Stability, J. Stat. Phys. 103 (5-6) (2001) 1069-1106. | MR | Zbl
, ,[2] The Twist Map, the Extended Frenkel-Kontrovna Model and the Devil's Staircase, Physica D 7 (1983) 240-258. | MR | Zbl
,[3] Optimal Mass Transportation and Mather Theory, Preprint, http://arxiv.org/abs/math.DS/0412299. | MR
, ,[4] A Survey of Partial Differential Equations Methods in Weak KAM Theory, Comm. Pure Appl. Math. 57 (4) (2004) 445-480. | MR | Zbl
,[5] Effective Hamiltonians and Averaging for Hamiltonian Dynamics. I, Arch. Ration. Mech. Anal. 157 (1) (2001) 1-33. | MR | Zbl
, ,[6] Effective Hamiltonians and Averaging for Hamiltonian Dynamics. II, Arch. Ration. Mech. Anal. 161 (4) (2002) 271-305. | MR | Zbl
, ,[7] The Weak KAM Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics Series, vol. 88, Cambridge University Press, 2003.
,[8] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. | MR | Zbl
, ,[9] Computing the Effective Hamiltonian Using a Variational Approach, SIAM J. Control Optim. 43 (3) (2004) 792-812. | MR | Zbl
, ,[10] Kolmogorov-Arnold-Moser-Renormalization-Group Analysis of Stability in Hamiltonian Flows, Phys. Rev. Lett. 79 (1997) 3881-3884.
, , ,[11] L. Granieri, On action minimizing measures for the Monge-Kantorovich problem, Preprint, July 2004. | MR | Zbl
[12] Geodesics on a 3 Dimensional Riemannian Manifolds With Periodic Coefficients, Ann. of Math. 33 (1932) 719-739. | JFM | MR
,[13] Convex Analysis and Minimization Algorithms II, Grundlehren der Mathematischen Wissenschaften, vol. 306, Springer-Verlag, 1993, (Chapter 10). | MR | Zbl
, ,[14] Global Existence, Uniqueness and Asymptotic Behaviour of Solutions of the Wigner-Poisson and Schrödinger-Poisson Systems, Math. Meth. Appl. Sci. 17 (1994) 349-376. | MR | Zbl
, , ,[15] Semiclassical Mechanics, SIAM Rev. 27 (4) (1985) 485-504. | MR | Zbl
,[16] Minimal Measures, One-Dimensional Currents and the Monge-Kantorovich Problem, Calc. Var. Partial Differential Equations 27 (1) (2006) 1-23. | MR | Zbl
, , ,[17] On the Minimizing Measures of Lagrangian Dynamical Systems, Nonlinearity 5 (1992) 623-638. | MR | Zbl
,[18] Existence of Quasi-Periodic Orbits for Twist Homeomorphisms on the Annulus, Topology 21 (1982) 457-467. | MR | Zbl
,[19] Minimal Measures, Comment. Math. Helv. 64 (1989) 375-394. | MR | Zbl
,[20] Monotone Twist Mappings and the Calculus of Variations, Ergodic Theory Dynam. Systems 6 (1986) 401-413. | MR | Zbl
,[21] Eikonal Functions: Old and New, in: , , (Eds.), A Celebration of Mathematical Modeling: the Joseph B. Keller Anniversary Volume, Kluwer, 2004. | MR
, ,[22] The Principle of Least Action in Geometry and Dynamics, Lecture Notes in Mathematics, vol. 1844, Springer, 2004. | MR | Zbl
,[23] Topics in Optimal Transportation, Graduate Studies in Math., vol. 58, Amer. Math. Soc., 2003. | MR | Zbl
,[24] Optimal Transportation in the Presence of a Prescribed Pressure Field, Preprint, arXiv: math-ph/0306070 v5.
,[25] G. Wolansky, On time reversible description of the process of coagulation and fragmentation, Arch. Rat. Mech., submitted for publication. | Zbl
[26] Existence and Nonlinear Stability of Stationary States of the Schrödinger-Poisson System, J. Stat. Phys. 106 (2002) 1221-1239. | MR | Zbl
, , ,Cité par Sources :