@article{AIHPC_2009__26_1_191_0, author = {Gladiali, Francesca and Grossi, Massimo}, title = {On the {Spectrum} of a {Nonlinear} {Planar} {Problem}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {191--222}, publisher = {Elsevier}, volume = {26}, number = {1}, year = {2009}, doi = {10.1016/j.anihpc.2007.10.004}, mrnumber = {2483819}, zbl = {1166.35028}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2007.10.004/} }
TY - JOUR AU - Gladiali, Francesca AU - Grossi, Massimo TI - On the Spectrum of a Nonlinear Planar Problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 191 EP - 222 VL - 26 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2007.10.004/ DO - 10.1016/j.anihpc.2007.10.004 LA - en ID - AIHPC_2009__26_1_191_0 ER -
%0 Journal Article %A Gladiali, Francesca %A Grossi, Massimo %T On the Spectrum of a Nonlinear Planar Problem %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 191-222 %V 26 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2007.10.004/ %R 10.1016/j.anihpc.2007.10.004 %G en %F AIHPC_2009__26_1_191_0
Gladiali, Francesca; Grossi, Massimo. On the Spectrum of a Nonlinear Planar Problem. Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 1, pp. 191-222. doi : 10.1016/j.anihpc.2007.10.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2007.10.004/
[1] On a Variational Problem With Lack of Compactness: the Topological Effect of the Critical Points at Infinity, Calc. Var. 3 (1995) 67-93. | MR | Zbl
, , ,[2] Isoperimetric Inequalities and Applications, Pitman, Boston, 1980. | MR | Zbl
,[3] The Principal Eigenvalue and Maximum Principle for Second Order Elliptic Operators in General Domains, Comm. Pure Appl. Math 47 (1994) 47-92. | MR | Zbl
, , ,[4] Convexity of Solutions of Semilinear Elliptic Equations, Duke Math. J. 52 (1985) 431-456. | MR | Zbl
, ,[5] A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description, Part II, Commun. Math. Phys. 174 (1995) 229-260. | MR | Zbl
, , , ,[6] A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description, Commun. Math. Phys. 143 (1992) 501-525. | MR | Zbl
, , , ,[7] Partial Differential Equations, Academic Press, Inc., 1988. | MR | Zbl
, ,[8] S.Y.A. Chang, C.C. Chen, C.S. Lin, Extremal functions for a mean field equation in two dimension, preprint. | MR
[9] Rotational Symmetry of Solutions of Some Nonlinear Problems in Statistical Mechanics and in Geometry, Comm. Math. Phys. 160 (2) (1994) 217-238. | MR | Zbl
, ,[10] Classification of Solutions of Some Nonlinear Elliptic Equations, Duke Math. J. 63 (1991) 615-622. | MR | Zbl
, ,[11] On the Symmetry of Blowup Solutions to a Mean Field Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 271-296. | Numdam | MR | Zbl
, ,[12] Existence Results for Mean Field Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 653-666. | Numdam | MR | Zbl
, , , ,[13] K. El Mehdi, M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint. | MR
[14] Elliptic Partial Differential Equations of Second Order, Springer, 1998. | Zbl
, ,[15] Some Results for the Gelfand's Problem, Comm. Partial Differential Equations 29 (9-10) (2004) 1335-1364. | MR | Zbl
, ,[16] On an Eigenvalue Problem Related to the Critical Exponent, Math. Z. 250 (1) (2005) 225-256. | MR | Zbl
, ,[17] Statistical Mechanics of Classical Particles With Logarithmic Interactions, Comm. Pure Appl. Math. 46 (1) (1993) 27-56. | MR | Zbl
,[18] Harnack Type Inequality: the Method of Moving Planes, Commun. Math. Phys. 200 (1999) 421-444. | MR | Zbl
,[19] On the Nodal Line of the Second Eigenfunction of the Laplacian in , J. Differential Geometry 35 (1992) 255-263. | MR | Zbl
,[20] Asymptotic Analysis for Two-Dimensional Elliptic Eigenvalues Problems With Exponentially Dominated Nonlinearities, Asymptotic Anal. 3 (1990) 173-188. | MR | Zbl
, ,[21] Maximum Principles in Differential Equations, Prentice-Hall, New Jersey, 1967. | MR | Zbl
, ,[22] Global Analysis for a Two-Dimensional Eigenvalue Problem With Exponential Nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 367-398. | Numdam | MR | Zbl
,[23] Multiple Condensate Solutions for the Chern-Simons-Higgs Theory, J. Math. Phys. 37 (1996) 3769-3796. | MR | Zbl
,Cited by Sources: