@article{AIHPC_2009__26_2_457_0, author = {Cerpa, Eduardo and Cr\'epeau, Emmanuelle}, title = {Boundary {Controllability} for the {Nonlinear} {Korteweg-De} {Vries} {Equation} on {Any} {Critical} {Domain}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {457--475}, publisher = {Elsevier}, volume = {26}, number = {2}, year = {2009}, doi = {10.1016/j.anihpc.2007.11.003}, mrnumber = {2504039}, zbl = {1158.93006}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.11.003/} }
TY - JOUR AU - Cerpa, Eduardo AU - Crépeau, Emmanuelle TI - Boundary Controllability for the Nonlinear Korteweg-De Vries Equation on Any Critical Domain JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 457 EP - 475 VL - 26 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.11.003/ DO - 10.1016/j.anihpc.2007.11.003 LA - en ID - AIHPC_2009__26_2_457_0 ER -
%0 Journal Article %A Cerpa, Eduardo %A Crépeau, Emmanuelle %T Boundary Controllability for the Nonlinear Korteweg-De Vries Equation on Any Critical Domain %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 457-475 %V 26 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.11.003/ %R 10.1016/j.anihpc.2007.11.003 %G en %F AIHPC_2009__26_2_457_0
Cerpa, Eduardo; Crépeau, Emmanuelle. Boundary Controllability for the Nonlinear Korteweg-De Vries Equation on Any Critical Domain. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 2, pp. 457-475. doi : 10.1016/j.anihpc.2007.11.003. https://www.numdam.org/articles/10.1016/j.anihpc.2007.11.003/
[1] Local Controllability of a 1-D Schrödinger Equation, J. Math. Pures Appl. (9) 84 (7) (2005) 851-956, MR MR2144647. | MR | Zbl
,[2] Controllability of a Quantum Particle in a Moving Potential Well, J. Funct. Anal. 232 (2) (2006) 328-389, MR MR2200740. | MR
, ,[3] A Nonhomogeneous Boundary-Value Problem for the Korteweg-De Vries Equation Posed on a Finite Domain, Comm. Partial Differential Equations 28 (7-8) (2003) 1391-1436, MR MR1998942 (2004h:35195). | MR | Zbl
, , ,[4] Exact Controllability of a Nonlinear Korteweg-De Vries Equation on a Critical Spatial Domain, SIAM J. Control Optim. 46 (3) (2007) 877-899. | MR | Zbl
,[5] M. Chapouly, Global controllability of a nonlinear Korteweg-de Vries equation, Preprint, 2007. | MR | Zbl
[6] Global Asymptotic Stabilization for Controllable Systems Without Drift, Math. Control Signals Systems 5 (3) (1992) 295-312, MR MR1164379 (93m:93084). | MR | Zbl
,[7] On the Controllability of 2-D Incompressible Perfect Fluids, J. Math. Pures Appl. (9) 75 (2) (2007) 155-188, MR MR1380673 (97b:93010). | MR | Zbl
,[8] Local Controllability of a 1-D Tank Containing a Fluid Modeled by the Shallow Water Equations, ESAIM Control Optim. Calc. Var. 8 (2002) 513-554, (electronic). A tribute to J.L. Lions, MR MR1932962 (2004a:93009). | Numdam | MR | Zbl
,[9] On the Small-Time Local Controllability of a Quantum Particle in a Moving One-Dimensional Infinite Square Potential Well, C. R. Math. Acad. Sci. Paris 342 (2) (2006) 103-108, MR MR2193655. | MR | Zbl
,[10] Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007, MR MR2302744. | MR | Zbl
,[11] Exact Boundary Controllability of a Nonlinear KdV Equation With Critical Lengths, J. Eur. Math. Soc. (JEMS) 6 (3) (2004) 367-398, MR MR2060480 (2005b:93016). | MR | Zbl
, ,[12] Global Steady-State Controllability of One-Dimensional Semilinear Heat Equations, SIAM J. Control Optim. 43 (2) (2004) 549-569, (electronic), MR MR2086173 (2005f:93009). | MR | Zbl
, ,[13] Global Steady-State Stabilization and Controllability of 1D Semilinear Wave Equations, Commun. Contemp. Math. 8 (4) (2006) 535-567, MR MR2258876. | MR | Zbl
, ,[14] O. Glass, S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Preprint, Université de Paris 6, 2007. | MR | Zbl
[15] The Initial-Boundary Value Problem for the Korteweg-De Vries Equation, Comm. Partial Differential Equations 31 (7-9) (2006) 1151-1190, MR MR2254610. | MR | Zbl
,[16] On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philos. Mag. 39 (1895) 422-443. | JFM
, ,[17] Contrôlabilité Exacte, Perturbations Et Stabilisation De Systèmes Distribués. Tome 1, Recherches en Mathématiques Appliquées, vol. 8, Masson, Paris, 1988, MR MR953547 (90a:49040). | MR | Zbl
,[18] Exact Boundary Controllability for the Korteweg-De Vries Equation on a Bounded Domain, ESAIM Control Optim. Calc. Var. 2 (1997) 33-55, (electronic), MR MR1440078 (98d:93016). | Numdam | MR | Zbl
,[19] Exact Boundary Controllability for the Linear Korteweg-De Vries Equation on the Half-Line, SIAM J. Control Optim. 39 (2) (2000) 331-351, (electronic), MR MR1788062 (2001j:93012). | MR | Zbl
,[20] Control of the Surface of a Fluid by a Wavemaker, ESAIM Control Optim. Calc. Var. 10 (3) (1988) 346-380, (electronic), MR MR2084328 (2005h:93091). | Numdam | MR | Zbl
,[21] Exact Controllability and Stabilizability of the Korteweg-De Vries Equation, Trans. Amer. Math. Soc. 348 (9) (1996) 3643-3672, MR MR1360229 (96m:93025). | MR | Zbl
, ,[22] Exact Boundary Controllability of the Korteweg-De Vries Equation, SIAM J. Control Optim. 37 (2) (1999) 543-565, (electronic), MR MR1670653 (2000b:93010). | MR | Zbl
,- , 2024 European Control Conference (ECC) (2024), p. 368 | DOI:10.23919/ecc64448.2024.10590951
- A Note on the Critical Length Phenomenon for the Korteweg-de Vries Equation, Analysis and PDE in Latin America, Volume 10 (2024), p. 62 | DOI:10.1007/978-3-031-73274-4_9
- Small-time local controllability of the bilinear Schrödinger equation with a nonlinear competition, ESAIM: Control, Optimisation and Calculus of Variations, Volume 30 (2024), p. 2 | DOI:10.1051/cocv/2023077
- Singular Perturbation Analysis for a Coupled KdV–ODE System, IEEE Transactions on Automatic Control, Volume 69 (2024) no. 8, p. 5326 | DOI:10.1109/tac.2024.3359538
- Insensitizing control problem for the Hirota–Satsuma system of KdV–KdV type, Nonlinear Analysis, Volume 239 (2024), p. 113422 | DOI:10.1016/j.na.2023.113422
- Global Approximate Controllability of the Korteweg-de Vries Equation by a Finite-Dimensional Force, Applied Mathematics Optimization, Volume 87 (2023) no. 1 | DOI:10.1007/s00245-022-09924-6
- On Boundary Controllability for the Higher-Order Nonlinear Schrödinger Equation, Axioms, Volume 12 (2023) no. 12, p. 1127 | DOI:10.3390/axioms12121127
- On a multi-objective control problem for the Korteweg–de Vries equation, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 4 | DOI:10.1007/s00526-023-02471-0
- Quadratic behaviors of the 1D linear Schrödinger equation with bilinear control, Journal of Differential Equations, Volume 351 (2023), p. 324 | DOI:10.1016/j.jde.2023.01.007
- Control results for a model of resonant interaction between short and long capillary-gravity waves, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 5 | DOI:10.1007/s00030-023-00867-7
- Local well-posedness of the coupled KdV-KdV systems on
, Evolution Equations and Control Theory, Volume 11 (2022) no. 5, p. 1829 | DOI:10.3934/eect.2022002 - Well‐posedness and stability of a nonlinear time‐delayed dispersive equation via the fixed point technique: A case study of no interior damping, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 8, p. 4555 | DOI:10.1002/mma.8052
- Cost for a controlled linear KdV equation, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. S21 | DOI:10.1051/cocv/2020066
- Weak damping for the Korteweg-de Vries equation, Electronic Journal of Qualitative Theory of Differential Equations (2021) no. 43, p. 1 | DOI:10.14232/ejqtde.2021.1.43
- Small-time global stabilization of the viscous Burgers equation with three scalar controls, Journal de Mathématiques Pures et Appliquées, Volume 151 (2021), p. 212 | DOI:10.1016/j.matpur.2021.03.001
- A qualitative study and numerical simulations for a time-delayed dispersive equation, Journal of Applied Mathematics and Computing, Volume 66 (2021) no. 1-2, p. 465 | DOI:10.1007/s12190-020-01446-0
- Decay for the nonlinear KdV equations at critical lengths, Journal of Differential Equations, Volume 295 (2021), p. 249 | DOI:10.1016/j.jde.2021.05.057
- Well-posedness and controllability of Kawahara equation in weighted Sobolev spaces, Nonlinear Analysis, Volume 207 (2021), p. 112267 | DOI:10.1016/j.na.2021.112267
- Qualitative Analysis of the Dynamic for the Nonlinear Korteweg–de Vries Equation with a Boundary Memory, Qualitative Theory of Dynamical Systems, Volume 20 (2021) no. 2 | DOI:10.1007/s12346-021-00472-y
- Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations, Journal de Mathématiques Pures et Appliquées, Volume 136 (2020), p. 22 | DOI:10.1016/j.matpur.2020.02.001
- BOUNDARY CONTROLLABILITY FOR THE TIME-FRACTIONAL NONLINEAR KORTEWEG-DE VRIES (KDV) EQUATION, Journal of Applied Analysis Computation, Volume 10 (2020) no. 2, p. 411 | DOI:10.11948/20180018
- Local exact controllability to the trajectories of the Korteweg–de Vries–Burgers equation on a bounded domain with mixed boundary conditions, Journal of Differential Equations, Volume 268 (2020) no. 9, p. 4945 | DOI:10.1016/j.jde.2019.10.043
- Local Exact Controllability to the Trajectories of Burgers–Fisher Equation, Mathematical Problems in Engineering, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/4085354
- Controllability and Stabilizability of a Higher Order Wave Equation on a Periodic Domain, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 2, p. 1121 | DOI:10.1137/19m1240472
- Output feedback stabilization of the linearized Korteweg–de Vries equation with right endpoint controllers, Automatica, Volume 109 (2019), p. 108531 | DOI:10.1016/j.automatica.2019.108531
- Controllability Problems for the Korteweg–de Vries Equation with Integral Overdetermination, Differential Equations, Volume 55 (2019) no. 1, p. 126 | DOI:10.1134/s0012266119010130
- Control of a Boussinesq system of KdV–KdV type on a bounded interval, ESAIM: Control, Optimisation and Calculus of Variations, Volume 25 (2019), p. 58 | DOI:10.1051/cocv/2018036
- Two Approaches for the Stabilization of Nonlinear KdV Equation With Boundary Time-Delay Feedback, IEEE Transactions on Automatic Control, Volume 64 (2019) no. 4, p. 1403 | DOI:10.1109/tac.2018.2849564
- Boosting the decay of solutions of the linearised Korteweg-de Vries–Burgers equation to a predetermined rate from the boundary, International Journal of Control, Volume 92 (2019) no. 8, p. 1753 | DOI:10.1080/00207179.2017.1408923
- Open loop stabilization of incompressible Navier–Stokes equations in a 2d channel using power series expansion, Journal de Mathématiques Pures et Appliquées, Volume 130 (2019), p. 301 | DOI:10.1016/j.matpur.2019.01.006
- Control Problems with an Integral Condition for Korteweg–de Vries Equation on Unbounded Domains, Journal of Optimization Theory and Applications, Volume 180 (2019) no. 1, p. 290 | DOI:10.1007/s10957-018-1360-z
- Pseudo-Backstepping and Its Application to the Control of Korteweg–de Vries Equation from the Right Endpoint on a Finite Domain, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 2, p. 1255 | DOI:10.1137/18m1211933
- Null Controllability of a Linearized Korteweg–de Vries Equation by Backstepping Approach, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 2, p. 1493 | DOI:10.1137/17m1115253
- Initial boundary value problem for Korteweg–de Vries equation: a review and open problems, São Paulo Journal of Mathematical Sciences, Volume 13 (2019) no. 2, p. 402 | DOI:10.1007/s40863-019-00120-z
- Asymptotic stability of a Korteweg–de Vries equation with a two-dimensional center manifold, Advances in Nonlinear Analysis, Volume 7 (2018) no. 4, p. 497 | DOI:10.1515/anona-2016-0097
- Uniform null controllability of a linear KdV equation using two controls, Journal of Mathematical Analysis and Applications, Volume 457 (2018) no. 1, p. 922 | DOI:10.1016/j.jmaa.2017.08.039
- Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients, Proceedings - Mathematical Sciences, Volume 128 (2018) no. 3 | DOI:10.1007/s12044-018-0410-7
- Feedback Stabilization and Boundary Controllability of the Korteweg–de Vries Equation on a Star-Shaped Network, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 3, p. 1620 | DOI:10.1137/17m113959x
- Small-time local stabilization for a Korteweg–de Vries equation, Systems Control Letters, Volume 111 (2018), p. 64 | DOI:10.1016/j.sysconle.2017.11.003
- Local exponential stabilization for a class of Korteweg–de Vries equations by means of time-varying feedback laws, Analysis PDE, Volume 10 (2017) no. 5, p. 1089 | DOI:10.2140/apde.2017.10.1089
- The stochastic Korteweg–de Vries equation on a bounded domain, Applied Mathematics and Computation, Volume 310 (2017), p. 97 | DOI:10.1016/j.amc.2017.04.031
- Well-posedness of a nonlinear boundary value problem for the Korteweg–de Vries equation on a bounded domain, Journal of Mathematical Analysis and Applications, Volume 448 (2017) no. 2, p. 797 | DOI:10.1016/j.jmaa.2016.11.032
- Boundary local null-controllability of the Kuramoto–Sivashinsky equation, Mathematics of Control, Signals, and Systems, Volume 29 (2017) no. 1 | DOI:10.1007/s00498-016-0182-5
- Neumann Boundary Controllability of the Korteweg–de Vries Equation on a Bounded Domain, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 6, p. 3503 | DOI:10.1137/15m103755x
- PREFACE, ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, p. 913 | DOI:10.1051/cocv/2016057
- Lagrangian Controllability of the 1-Dimensional Korteweg–de Vries Equation, SIAM Journal on Control and Optimization, Volume 54 (2016) no. 6, p. 3152 | DOI:10.1137/140964783
- Exact Controllability For Korteweg-De Vries Equation and its Cost in the Zero-Dispersion Limit, Applied Mathematics in Tunisia, Volume 131 (2015), p. 293 | DOI:10.1007/978-3-319-18041-0_19
- On the non-uniform null controllability of a linear KdV equation, Asymptotic Analysis, Volume 94 (2015) no. 1-2, p. 33 | DOI:10.3233/asy-151300
- Internal controllability of the korteweg–de vries equation on a bounded domain, ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 4, p. 1076 | DOI:10.1051/cocv/2014059
- Asymptotic stability of a nonlinear Korteweg–de Vries equation with critical lengths, Journal of Differential Equations, Volume 259 (2015) no. 8, p. 4045 | DOI:10.1016/j.jde.2015.05.010
- Global controllability and stabilizability of Kawahara equation on a periodic domain, Mathematical Control and Related Fields, Volume 5 (2015) no. 2, p. 335 | DOI:10.3934/mcrf.2015.5.335
- Simultaneous local exact controllability of 1D bilinear Schrödinger equations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 31 (2014) no. 3, p. 501 | DOI:10.1016/j.anihpc.2013.05.001
- An example of non-decreasing solution for the KdV equation posed on a bounded interval, Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, p. 421 | DOI:10.1016/j.crma.2014.02.001
- Control of a Korteweg-de Vries equation: A tutorial, Mathematical Control Related Fields, Volume 4 (2014) no. 1, p. 45 | DOI:10.3934/mcrf.2014.4.45
- Local controllability of 1D Schrödinger equations with bilinear control and minimal time, Mathematical Control Related Fields, Volume 4 (2014) no. 2, p. 125 | DOI:10.3934/mcrf.2014.4.125
- Null controllability of a linear KdV equation on an interval with special boundary conditions, Mathematics of Control, Signals, and Systems, Volume 26 (2014) no. 3, p. 375 | DOI:10.1007/s00498-013-0122-6
- On Approximate Controllability of Generalized KdV Solitons, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 1, p. 52 | DOI:10.1137/120879701
- Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 2, p. 358 | DOI:10.1051/cocv/2012012
- Rapid Stabilization for a Korteweg-de Vries Equation From the Left Dirichlet Boundary Condition, IEEE Transactions on Automatic Control, Volume 58 (2013) no. 7, p. 1688 | DOI:10.1109/tac.2013.2241479
- Boundary Controllability of the Korteweg–de Vries Equation on a Bounded Domain, SIAM Journal on Control and Optimization, Volume 51 (2013) no. 4, p. 2976 | DOI:10.1137/120891721
- Energy decay for the modified Kawahara equation posed in a bounded domain, Journal of Mathematical Analysis and Applications, Volume 385 (2012) no. 2, p. 743 | DOI:10.1016/j.jmaa.2011.07.003
- Local exact controllability to the trajectories of the 1-D Kuramoto–Sivashinsky equation, Journal of Differential Equations, Volume 250 (2011) no. 4, p. 2024 | DOI:10.1016/j.jde.2010.12.015
- Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain, Communications in Partial Differential Equations, Volume 35 (2010) no. 4, p. 707 | DOI:10.1080/03605300903585336
- Discussion on: “Adaptive Boundary Control of the Forced Generalized Korteweg-de Vries-Burgers Equation”, European Journal of Control, Volume 16 (2010) no. 1, p. 85 | DOI:10.1016/s0947-3580(10)70625-7
- Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, Journal de Mathématiques Pures et Appliquées, Volume 94 (2010) no. 5, p. 520 | DOI:10.1016/j.matpur.2010.04.001
- Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition, Systems Control Letters, Volume 59 (2010) no. 7, p. 390 | DOI:10.1016/j.sysconle.2010.05.001
- On the controllability of the fifth-order Korteweg–de Vries equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 6, p. 2181 | DOI:10.1016/j.anihpc.2009.01.010
- GLOBAL CONTROLLABILITY OF A NONLINEAR KORTEWEG–DE VRIES EQUATION, Communications in Contemporary Mathematics, Volume 11 (2009) no. 03, p. 495 | DOI:10.1142/s0219199709003454
- ON THE CONTROLLABILITY OF A COUPLED SYSTEM OF TWO KORTEWEG–DE VRIES EQUATIONS, Communications in Contemporary Mathematics, Volume 11 (2009) no. 05, p. 799 | DOI:10.1142/s0219199709003600
- Control and stabilization of the Korteweg-de Vries equation: recent progresses, Journal of Systems Science and Complexity, Volume 22 (2009) no. 4, p. 647 | DOI:10.1007/s11424-009-9194-2
- Controllability and asymptotic stabilization of the Camassa–Holm equation, Journal of Differential Equations, Volume 245 (2008) no. 6, p. 1584 | DOI:10.1016/j.jde.2008.06.016
Cité par 71 documents. Sources : Crossref