@article{AIHPC_2009__26_1_285_0, author = {Wang, Qian}, title = {On the {Geometry} of {Null} {Cones} in {Einstein-Vacuum} {Spacetimes}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {285--328}, publisher = {Elsevier}, volume = {26}, number = {1}, year = {2009}, doi = {10.1016/j.anihpc.2008.03.002}, mrnumber = {2483823}, zbl = {1157.83309}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.03.002/} }
TY - JOUR AU - Wang, Qian TI - On the Geometry of Null Cones in Einstein-Vacuum Spacetimes JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 285 EP - 328 VL - 26 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.03.002/ DO - 10.1016/j.anihpc.2008.03.002 LA - en ID - AIHPC_2009__26_1_285_0 ER -
%0 Journal Article %A Wang, Qian %T On the Geometry of Null Cones in Einstein-Vacuum Spacetimes %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 285-328 %V 26 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.03.002/ %R 10.1016/j.anihpc.2008.03.002 %G en %F AIHPC_2009__26_1_285_0
Wang, Qian. On the Geometry of Null Cones in Einstein-Vacuum Spacetimes. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 285-328. doi : 10.1016/j.anihpc.2008.03.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.03.002/
[1] Théorème D'existence Pour Certains Systemes D'équations Aux Dérivées Partielles Nonlinéaires, Acta Math. 88 (1952) 141-225. | MR | Zbl
,[2] The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, Princeton, 1993. | MR | Zbl
, ,[3] The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, 1973. | MR | Zbl
, ,[4] The Evolution Problem in General Relativity, Birkhäuser, 2003. | MR | Zbl
, ,[5] Space-Time Estimates for Null Forms and the Local Existence Theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268. | MR | Zbl
, ,[6] S. Klainerman, I. Rodnianski, Unpublished notes, 2003.
[7] Rough Solutions to the Einstein Vacuum Equations, Ann. of Math. 161 (2005) 1143-1193. | MR | Zbl
, ,[8] The Causal Structure of Microlocalized Rough Einstein Metrics, Ann. of Math. 161 (2005) 1195-1243. | MR | Zbl
, ,[9] Causal Geometry of Einstein-Vacuum Spacetimes With Finite Curvature Flux, Invent. Math. 159 (3) (2005) 437-529. | MR | Zbl
, ,[10] Bilinear Estimates on Curved Space-Times, J. Hyperbolic Differential Equations 2 (2005) 279-291. | MR
, ,[11] Sharp Trace Theorems for Null Hypersurfaces on Einstein Metrics With Finite Curvature Flux, Geom. Funct. Anal. 16 (1) (2006) 164-229. | MR
, ,[12] A Geometric Littlewood-Paley Theory, Geom. Funct. Anal. 16 (1) (2006) 126-163. | MR
, ,[13] S. Klainerman, I. Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc., to appear. | MR
[14] A Kirchoff-Sobolev Parametrix for the Wave Equation and Applications, J. Hyperbolic Differential Equations 4 (3) (2007) 401-433. | MR | Zbl
, ,[15] On the Breakdown Criterion in General Relativity, http://arXiv:0801.1709.
, ,[16] The Motion of Point Particles in Curved Spacetimes, www.livingreviews.org/lrr-2004-6. | Zbl
,[17] Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematics Studies, vol. 63, Princeton University Press, 1970. | MR | Zbl
,[18] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, Monographs in Harmonic Analysis III. | MR | Zbl
,[19] Harmonic Analysis in the Phase Plane, Lecture notes 254A, http://www.math.ucla.edu/~tao.
,[20] Interpolation Theory, Function Spaces, Differential Operators, second ed., Johann Ambrosius Barth, Heidelberg, 1995. | MR | Zbl
,[21] General Relativity, University of Chicago Press, 1984. | MR | Zbl
,[22] Q. Wang, Causal geometry of Einstein-vacuum spacetimes, Ph.D thesis of Princeton University, 2006. | MR
Cité par Sources :