@article{AIHPC_2009__26_5_1621_0, author = {Bandeira, Lu{\'\i}S and Pedregal, Pablo}, title = {Finding {New} {Families} of {Rank-One} {Convex} {Polynomials}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1621--1634}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2008.08.002}, mrnumber = {2566703}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.002/} }
TY - JOUR AU - Bandeira, LuíS AU - Pedregal, Pablo TI - Finding New Families of Rank-One Convex Polynomials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1621 EP - 1634 VL - 26 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.002/ DO - 10.1016/j.anihpc.2008.08.002 LA - en ID - AIHPC_2009__26_5_1621_0 ER -
%0 Journal Article %A Bandeira, LuíS %A Pedregal, Pablo %T Finding New Families of Rank-One Convex Polynomials %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1621-1634 %V 26 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.002/ %R 10.1016/j.anihpc.2008.08.002 %G en %F AIHPC_2009__26_5_1621_0
Bandeira, LuíS; Pedregal, Pablo. Finding New Families of Rank-One Convex Polynomials. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1621-1634. doi : 10.1016/j.anihpc.2008.08.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.002/
[1] An Example of a Quasiconvex Function Not Polyconvex in Dimension 2, Arch. Rational Mech. Anal. 117 (1992) 155-166. | MR | Zbl
, ,[2] Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal. 63 (1977) 337-403. | MR | Zbl
,[3] Direct Methods in the Calculus of Variations, Springer, 1989. | MR | Zbl
,[4] Some Examples of Rank One Convex Functions in Dimension Two, Proc. Roy. Soc. Edinburgh Sect. A 114 (1-2) (1990) 135-150. | MR | Zbl
, , , ,[5] A Counterexample in the Vectorial Calculus of Variations, in: Material Instabilities in Continuum Mechanics, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, pp. 77-83. | MR | Zbl
, ,[6] A Necessary Condition for the Quasiconvexity of Polynomials of Degree Four, J. Convex Anal. 13 (1) (2006) 51-60. | MR | Zbl
,[7] Quasiconvexity and the Lower Semicontinuity of Multiple Integrals, Pacific J. Math. 2 (1952) 25-53. | MR | Zbl
,[8] Laminates and Microstructure, Eur. J. Appl. Math. 4 (2) (1993) 121-149. | MR | Zbl
,[9] Computing Parametric Geometric Resolutions, Appl. Algebra Engrg. Comm. Comput. 13 (5) (2003) 349-393. | MR | Zbl
,[10] Elimination Methods, Texts and Monographs in Symbolic Computation, Springer, 2001. | MR | Zbl
,[11] Comprehensive Gröbner Bases, J. Symbolic Comput. 14 (1992) 1-29. | MR | Zbl
,Cité par Sources :