@article{AIHPC_2009__26_6_2073_0, author = {Bertoin, Jean}, title = {Two {Solvable} {Systems} of {Coagulation} {Equations} {With} {Limited} {Aggregations}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2073--2089}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2008.10.007}, mrnumber = {2569886}, zbl = {1179.82180}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.10.007/} }
TY - JOUR AU - Bertoin, Jean TI - Two Solvable Systems of Coagulation Equations With Limited Aggregations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2073 EP - 2089 VL - 26 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.10.007/ DO - 10.1016/j.anihpc.2008.10.007 LA - en ID - AIHPC_2009__26_6_2073_0 ER -
%0 Journal Article %A Bertoin, Jean %T Two Solvable Systems of Coagulation Equations With Limited Aggregations %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2073-2089 %V 26 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.10.007/ %R 10.1016/j.anihpc.2008.10.007 %G en %F AIHPC_2009__26_6_2073_0
Bertoin, Jean. Two Solvable Systems of Coagulation Equations With Limited Aggregations. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2073-2089. doi : 10.1016/j.anihpc.2008.10.007. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.10.007/
[1] Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): a Review of the Mean-Field Theory for Probabilists, Bernoulli 5 (1999) 3-48. | MR | Zbl
,[2] The Structure of Typical Clusters in Large Sparse Random Configurations, available at, http://hal.archives-ouvertes.fr/ccsd-00339779/en/. | Zbl
, ,[3] A System of Grabbing Particles Related to Galton-Watson Trees, Preprint available at, http://fr.arXiv.org/abs/0804.0726.
, , ,[4] Probability and Measure, third ed., John Wiley & Sons, New York, 1995. | MR | Zbl
,[5] Smoluchovski's Coagulation Equation: Probabilistic Interpretation of Solutions for Constant, Additive and Multiplicative Kernels, Ann. Scuola Normale Sup. Pisa XXIX (2000) 549-580. | Numdam | MR | Zbl
, ,[6] A General Mathematical Survey of the Coagulation Equation, in: , (Eds.), Topics in Current Aerosol Research, Part 2, International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 201-376.
,[7] Mathematical Theory of Coagulation, Seoul National University, Seoul, 1994. | MR | Zbl
,[8] The Total Progeny in a Branching Process and a Related Random Walk, J. Appl. Probab. 6 (1969) 682-686. | MR | Zbl
,[9] Dust and Self-Similarity for the Smoluchowski Coagulation Equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 331-362. | Numdam | MR | Zbl
, ,[10] Existence of Self-Similar Solutions to Smoluchowski's Coagulation Equation, Comm. Math. Phys. 256 (2005) 589-609. | MR | Zbl
, ,[11] The Solution of the Coagulation Equation for Cloud Droplets in a Rising Air Current, Izv. Geophys. Ser. 5 (1963) 482-487.
,[12] Existence of Gelling Solutions for Coagulation-Fragmentation Equations, Comm. Math. Phys. 194 (1998) 541-567. | MR | Zbl
,[13] On Coalescence Equations and Related Models, in: , , (Eds.), Modeling and Computational Methods for Kinetic Equations, Birkhäuser, 2004, pp. 321-356. | MR | Zbl
, ,[14] On an Infinite Set of Nonlinear Differential Equations, Quart. J. Math. Oxford 13 (1962) 119-128. | MR | Zbl
,[15] Approach to Self-Similarity in Smoluchowski's Coagulation Equations, Comm. Pure Appl. Math. 57 (2004) 1197-1232. | MR | Zbl
, ,[16] Cluster Coagulation, Comm. Math. Phys. 209 (2000) 407-435. | MR | Zbl
,[17] Drei Vortrage Über Diffusion, Brownsche Molekularbewegung Und Koagulation Von Kolloidteilchen, Phys. Z. 17 (1916) 557-571, and 585-599.
,[18] Solutions and Critical Times for the Monodisperse Coagulation Equation When , J. Phys. A: Math. Gen. 16 (1983) 767-773. | MR | Zbl
,[19] A Branching-Process Solution of the Polydisperse Coagulation Equation, Adv. Appl. Probab. 16 (1984) 56-69. | MR | Zbl
,[20] Solution of the Coagulation Equation in the Case of a Bilinear Coefficient of Adhesion of Particles, Soviet Phys. Dokl. 16 (1971) 124-125.
,[21] Size Distribution in the Polymerization Model , J. Phys. A: Math. Gen. 17 (1984) 2281-2297. | MR
, ,[22] On the Occurrence of a Gelation Transition in Smoluchowski's Coagulation Equation, J. Statist. Phys. 44 (1986) 785-792. | MR
, ,[23] Generatingfunctionology, Academic Press, 1994, Also available via, http://www.math.upenn.edu/~wilf/gfology2.pdf. | MR | Zbl
,Cité par Sources :