@article{AIHPC_2009__26_5_1817_0, author = {Blair, Matthew D. and Smith, Hart F. and Sogge, Christopher D.}, title = {Strichartz {Estimates} for the {Wave} {Equation} on {Manifolds} {With} {Boundary}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1817--1829}, publisher = {Elsevier}, volume = {26}, number = {5}, year = {2009}, doi = {10.1016/j.anihpc.2008.12.004}, mrnumber = {2566711}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.12.004/} }
TY - JOUR AU - Blair, Matthew D. AU - Smith, Hart F. AU - Sogge, Christopher D. TI - Strichartz Estimates for the Wave Equation on Manifolds With Boundary JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1817 EP - 1829 VL - 26 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.12.004/ DO - 10.1016/j.anihpc.2008.12.004 LA - en ID - AIHPC_2009__26_5_1817_0 ER -
%0 Journal Article %A Blair, Matthew D. %A Smith, Hart F. %A Sogge, Christopher D. %T Strichartz Estimates for the Wave Equation on Manifolds With Boundary %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1817-1829 %V 26 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.12.004/ %R 10.1016/j.anihpc.2008.12.004 %G en %F AIHPC_2009__26_5_1817_0
Blair, Matthew D.; Smith, Hart F.; Sogge, Christopher D. Strichartz Estimates for the Wave Equation on Manifolds With Boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1817-1829. doi : 10.1016/j.anihpc.2008.12.004. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.12.004/
[1] High Frequency Approximation of Solutions to Critical Nonlinear Wave Equations, Amer. J. Math. 121 (1999) 131-175. | MR | Zbl
, ,[2] Decay Estimates for the Critical Wave Equation, Ann. Inst. H. Poincaré Anal. Non Lineáire 15 (6) (1998) 783-789. | Numdam | MR | Zbl
, ,[3] Scattering and Exponential Decay of the Local Energy for the Solutions of Semilinear and Subcritical Wave Equation Outside Convex Obstacle, Math. Z. 247 (2004) 619-642. | MR | Zbl
, ,[4] Global Strichartz Estimates for Nontrapping Geometries: About an Article by H. Smith and C. Sogge, Comm. Partial Differential Equations 28 (2003) 1675-1683. | MR | Zbl
,[5] Global Existence for Energy Critical Waves in 3-D Domains, J. Amer. Math. Soc. 21 (2008) 831-845. | MR
, , ,[6] N. Burq, F. Planchon, Global existence for energy critical waves in 3-d domains: Neumann boundary conditions, Amer. J. Math., in press. | MR
[7] Maximal Functions Asociated to Filtrations, J. Funct. Anal. 179 (2001) 409-425. | MR | Zbl
, ,[8] Generalized Strichartz Inequalities for the Wave Equation, J. Funct. Anal. 133 (1995) 50-68. | MR | Zbl
, ,[9] Regularity for the Wave Equation With a Critical Nonlinearity, Comm. Pure Appl. Math. 45 (1992) 749-774. | MR | Zbl
,[10] On Abstract Strichartz Estimates and the Strauss Conjecture for Nontrapping Obstacles, arXiv: 0805.1673. | MR
, , , , ,[11] Counter Examples to Strichartz Estimates for the Wave Equation in Domains, arXiv:0805.2901.
,[12] Norm Estimates in Besov and Lizorkin-Treibel Spaces for the Solutions of Second Order Linear Hyperbolic Equations, J. Soviet Math. 56 (1991) 2348-2389. | MR | Zbl
,[13] Endpoint Strichartz Estimates, Amer. J. Math. 120 (1998) 955-980. | MR | Zbl
, ,[14] Dispersive Estimates for Principally Normal Operators, Comm. Pure Appl. Math. 58 (2005) 217-284. | MR | Zbl
, ,[15] On Existence and Scattering With Minimal Regularity for Semilinear Wave Equations, J. Funct. Anal. 130 (1995) 357-426. | MR | Zbl
, ,[16] Global Strichartz Estimates for Solutions to the Wave Equation Exterior to a Convex Obstacle, Trans. Amer. Math. Soc. 356 (2004) 4839-4855. | MR | Zbl
,[17] Local Smoothing of Fourier Integral Operators and Carleson-Sjölin Estimates, J. Amer. Math. Soc. 6 (1993) 65-130. | MR | Zbl
, , ,[18] Time Decay for the Nonlinear Klein-Gordon Equation, Proc. Roy. Soc. A. 306 (1968) 291-296. | MR | Zbl
,[19] Regularity for the Wave Equation With a Critical Nonlinearity, Internat. Math. Res. Notices 7 (1994) 303-310. | MR | Zbl
, ,[20] A Parametrix Construction for Wave Equations With Coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998) 797-835. | Numdam | MR | Zbl
,[21] Spectral Cluster Estimates for Estimates, Amer. J. Math. 128 (2006) 1069-1103. | MR
,[22] On the Critical Semilinear Wave Equation Outside Convex Obstacles, J. Amer. Math. Soc. 8 (1995) 879-916. | MR | Zbl
, ,[23] Global Strichartz Estimates for Nontrapping Perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000) 2171-2183. | MR | Zbl
, ,[24] On the Norm of Spectral Clusters for Compact Manifolds With Boundary, Acta Math. 198 (2007) 107-153. | MR
, ,[25] Lectures on Nonlinear Wave Equations, International Press, Boston, MA, 1995. | MR | Zbl
,[26] Restriction of Fourier Transform to Quadratic Surfaces and Decay of Solutions to the Wave Equation, Duke Math. J. 44 (1977) 705-714. | MR | Zbl
,[27] Nonlinear Dispersive Equations: Local and Global Analysis, American Mathematical Society, Providence, RI, 2006. | MR | Zbl
,[28] Strichartz Estimates for Second Order Hyperbolic Operators With Nonsmooth Coefficients III, J. Amer. Math. Soc. 15 (2002) 419-442. | MR | Zbl
,[29] Phase Space Transforms and Microlocal Analysis, in: Phase Space Analysis of Partial Differential Equations, Vol. II, Pubbl. Cent. Ric. Mat. Ennio Georgi, Scuola Norm. Sup., Pisa, 2004, pp. 505-524. | MR | Zbl
,Cité par Sources :