@article{AIHPC_2009__26_4_1453_0, author = {Baladi, Viviane and Gou\"eZel, S\'eBastien}, title = {Good {Banach} {Spaces} for {Piecewise} {Hyperbolic} {Maps} {Via} {Interpolation}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1453--1481}, publisher = {Elsevier}, volume = {26}, number = {4}, year = {2009}, doi = {10.1016/j.anihpc.2009.01.001}, mrnumber = {2542733}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.01.001/} }
TY - JOUR AU - Baladi, Viviane AU - GouëZel, SéBastien TI - Good Banach Spaces for Piecewise Hyperbolic Maps Via Interpolation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1453 EP - 1481 VL - 26 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.01.001/ DO - 10.1016/j.anihpc.2009.01.001 LA - en ID - AIHPC_2009__26_4_1453_0 ER -
%0 Journal Article %A Baladi, Viviane %A GouëZel, SéBastien %T Good Banach Spaces for Piecewise Hyperbolic Maps Via Interpolation %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1453-1481 %V 26 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.01.001/ %R 10.1016/j.anihpc.2009.01.001 %G en %F AIHPC_2009__26_4_1453_0
Baladi, Viviane; GouëZel, SéBastien. Good Banach Spaces for Piecewise Hyperbolic Maps Via Interpolation. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 4, pp. 1453-1481. doi : 10.1016/j.anihpc.2009.01.001. https://www.numdam.org/articles/10.1016/j.anihpc.2009.01.001/
[1] Opérateurs Pseudo-Différentiels Et Théorème De Nash-Moser, CNRS éditions, Paris, 1991. | Zbl
, ,[2] On the Intermediate Spaces and Quasi-Linearizability of a Pair of Spaces of Sobolev-Liouville Type, Anal. Math. 24 (1998) 3-14, (in Russian). | MR | Zbl
,[3] Kneading Determinants and Spectra of Transfer Operators in Higher Dimensions: the Isotropic Case, Ergodic Theory Dynam. Systems 25 (2005) 1437-1470. | MR | Zbl
, ,
[4] Anisotropic Sobolev Spaces and Dynamical Transfer Operators:
[5] Anisotropic Hölder and Sobolev Spaces for Hyperbolic Diffeomorphisms, Ann. Inst. Fourier 57 (2007) 127-154. | Numdam | MR | Zbl
, ,[6] Dynamical Determinants and Spectrum for Hyperbolic Diffeomorphisms, in: , , (Eds.), Probabilistic and Geometric Structures in Dynamics, Contemp. Math., vol. 469, Amer. Math. Soc., 2008, pp. 29-68, Volume in honour of M. Brin's 60th birthday. | MR | Zbl
, ,[7] Convergence of Probability Measures, John Wiley and Sons, New York, 1968. | MR | Zbl
,[8] Ruelle-Perron-Frobenius Spectrum for Anosov Maps, Nonlinearity 15 (2002) 1905-1973. | MR | Zbl
, , ,
[9] Intrinsic Ergodicity of Affine Maps in
[10] Absolutely Continuous Invariant Probability Measures for Arbitrary Expanding Piecewise R-Analytic Mappings of the Plane, Ergodic Theory Dynam. Systems 20 (2000) 697-708. | MR | Zbl
,
[11] No Or Infinitely Many a.C.I.P. for Piecewise Expanding
[12] Decay of Correlations for Piecewise Invertible Maps in Higher Dimensions, Israel J. Math. 131 (2002) 203-220. | MR | Zbl
, ,[13] Ergodic and Statistical Properties of Piecewise Linear Hyperbolic Automorphisms of the 2-Torus, J. Statist. Phys. 69 (1992) 111-134. | MR | Zbl
,[14] Decay of Correlations and Dispersing Billiards, J. Statist. Phys. 94 (1999) 513-556. | MR | Zbl
,[15] Liapunov Multipliers and Decay of Correlations in Dynamical Systems, J. Statist. Phys. 115 (2004) 217-254. | MR | Zbl
, ,
[16] Stochastic Stability for Piecewise Expanding Maps in
[17] Absolutely Continuous Invariant Measures for Most Piecewise Smooth Expanding Maps, Ergodic Theory Dynam. Systems 22 (2002) 1061-1078. | MR | Zbl
,[18] Stability of Statistical Properties in Two-Dimensional Piecewise Hyperbolic Maps, Trans. Amer. Math. Soc. 360 (2008) 4777-4814. | MR | Zbl
, ,
[19] Absolutely Continuous Invariant Measures for Piecewise Expanding
[20] Banach Spaces Adapted to Anosov Systems, Ergodic Theory Dynam. Systems 26 (2006) 189-218. | MR | Zbl
, ,[21] Compact Locally Maximal Hyperbolic Sets for Smooth Maps: Fine Statistical Properties, J. Differential Geometry 79 (2008) 433-477. | MR | Zbl
, ,[22] Sur Un Théorème Spectral Et Son Application Aux Noyaux Lipschitziens, Proc. Amer. Math. Soc. 118 (1993) 627-634. | MR | Zbl
,[23] Ergodicité Et Mesures Invariantes Pour Les Transformations Dilatantes Par Morceaux D'une Région Bornée Du Plan, C. R. Acad. Sci. Paris Sér. A-B 289 (1979) A625-A627. | MR | Zbl
,[24] Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Walter de Gruyter & Co., Berlin, 1996. | MR | Zbl
, ,[25] ACIMs for Multidimensional Expanding Maps, Israel J. Math. 116 (2000) 223-248. | MR | Zbl
,[26] Multipliers on Fractional Sobolev Spaces, J. Math. Mech. 16 (1967) 1031-1060. | MR | Zbl
,
[27] General Function Spaces III (Spaces
[28] Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. | MR | Zbl
,[29] Theory of Function Spaces II, Birkhäuser, Basel, 1992. | MR | Zbl
,[30] Piecewise Expanding Maps on the Plane With Singular Ergodic Properties, Ergodic Theory Dynam. Systems 20 (2000) 1851-1857. | MR | Zbl
,[31] Absolutely Continuous Invariant Measures for Piecewise Real-Analytic Expanding Maps on the Plane, Comm. Math. Phys. 208 (2000) 605-622. | MR | Zbl
,[32] Decay of Correlations in Suspension Semi-Flows of Angle-Multiplying Maps, Ergodic Theory Dynam. Systems 28 (2008) 291-317. | MR | Zbl
,[33] Certain Spaces of Generalised Functions and Embedding Theorems, Uspekhi Mat. Nauk 20 (1965) 3-74, English translation:, Russian Math. Surveys 20 (1965). | MR | Zbl
, ,[34] Statistical Properties of Dynamical Systems With Some Hyperbolicity, Ann. of Math. 147 (1998) 585-650. | MR | Zbl
,- Conditional mixing in deterministic chaos, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 6, p. 1693 | DOI:10.1017/etds.2023.55
- Anosov diffeomorphisms, anisotropic BV spaces and regularity of foliations, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 8, p. 2431 | DOI:10.1017/etds.2021.52
- Analytical techniques for linear response formula of equilibrium states, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 30 (2020) no. 1 | DOI:10.1063/1.5122810
- Hölder regularity and exponential decay of correlations for a class of piecewise partially hyperbolic maps, Nonlinearity, Volume 33 (2020) no. 12, p. 6790 | DOI:10.1088/1361-6544/aba888
- A gentle introduction to anisotropic banach spaces, Chaos, Solitons Fractals, Volume 116 (2018), p. 29 | DOI:10.1016/j.chaos.2018.08.028
- Introduction, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 1 | DOI:10.1007/978-3-319-77661-3_1
- Anisotropic Banach spaces defined via cones, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 123 | DOI:10.1007/978-3-319-77661-3_4
- A variational formula for the essential spectral radius, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 157 | DOI:10.1007/978-3-319-77661-3_5
- Two applications of anisotropic spaces, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 209 | DOI:10.1007/978-3-319-77661-3_7
- Smooth expanding maps: The spectrum of the transfer operator, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 21 | DOI:10.1007/978-3-319-77661-3_2
- Smooth expanding maps: Dynamical determinants, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 79 | DOI:10.1007/978-3-319-77661-3_3
- Non-stationary Almost Sure Invariance Principle for Hyperbolic Systems with Singularities, Journal of Statistical Physics, Volume 172 (2018) no. 6, p. 1499 | DOI:10.1007/s10955-018-2107-9
- The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, Volume 166 (2017) no. 3-4, p. 525 | DOI:10.1007/s10955-016-1663-0
- Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables, Nonlinearity, Volume 30 (2017) no. 3, p. 1204 | DOI:10.1088/1361-6544/aa5b13
- Differentiability of thermodynamical quantities in non-uniformly expanding dynamics, Advances in Mathematics, Volume 292 (2016), p. 478 | DOI:10.1016/j.aim.2016.01.017
- Area Expanding
C 1 + α Suspension Semiflows, Communications in Mathematical Physics, Volume 325 (2014) no. 2, p. 803 | DOI:10.1007/s00220-013-1835-6 - Pseudo-orbits, stationary measures and metastability, Dynamical Systems, Volume 29 (2014) no. 3, p. 322 | DOI:10.1080/14689367.2014.890172
- A semi-invertible operator Oseledets theorem, Ergodic Theory and Dynamical Systems, Volume 34 (2014) no. 4, p. 1230 | DOI:10.1017/etds.2012.189
- Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools, Journal of Computational Dynamics, Volume 1 (2014) no. 2, p. 249 | DOI:10.3934/jcd.2014.1.249
- Spectral analysis of hyperbolic systems with singularities, Nonlinearity, Volume 27 (2014) no. 3, p. 379 | DOI:10.1088/0951-7715/27/3/379
- An Elementary Approach to Rigorous Approximation of Invariant Measures, SIAM Journal on Applied Dynamical Systems, Volume 13 (2014) no. 2, p. 958 | DOI:10.1137/130911044
- Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 2, p. 225 | DOI:10.1016/j.anihpc.2012.07.004
- A footnote on expanding maps, Discrete and Continuous Dynamical Systems, Volume 33 (2013) no. 8, p. 3741 | DOI:10.3934/dcds.2013.33.3741
- Multidimensional expanding maps with singularities: a pedestrian approach, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 1, p. 168 | DOI:10.1017/s0143385711000939
- Invariant measures with bounded variation densities for piecewise area preserving maps, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 2, p. 624 | DOI:10.1017/s0143385711001167
- Exponential Decay of Correlations for Piecewise Cone Hyperbolic Contact Flows, Communications in Mathematical Physics, Volume 314 (2012) no. 3, p. 689 | DOI:10.1007/s00220-012-1538-4
- Rare events, exponential hitting times and extremal indices via spectral perturbation†, Dynamical Systems, Volume 27 (2012) no. 1, p. 11 | DOI:10.1080/14689367.2011.653329
- Non-integrability of open billiard flows and Dolgopyat-type estimates, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 1, p. 295 | DOI:10.1017/s0143385710000933
- Differentiating potential functions of SRB measures on hyperbolic attractors, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 4, p. 1350 | DOI:10.1017/s0143385711000241
- Chaos and Ergodic Theory, Mathematics of Complexity and Dynamical Systems (2012), p. 63 | DOI:10.1007/978-1-4614-1806-1_6
- Example for exponential growth of complexity in a finite horizon multi-dimensional dispersing billiard, Nonlinearity, Volume 25 (2012) no. 5, p. 1275 | DOI:10.1088/0951-7715/25/5/1275
- A spectral gap for transfer operators of piecewise expanding maps, Discrete Continuous Dynamical Systems - A, Volume 30 (2011) no. 3, p. 917 | DOI:10.3934/dcds.2011.30.917
- Spectral analysis of the transfer operator for the Lorentz gas, Journal of Modern Dynamics, Volume 5 (2011) no. 4, p. 665 | DOI:10.3934/jmd.2011.5.665
- Lorentz Gas with Thermostatted Walls, Annales Henri Poincaré, Volume 11 (2010) no. 6, p. 1117 | DOI:10.1007/s00023-010-0047-2
- Chaos and Ergodic Theory, Encyclopedia of Complexity and Systems Science (2009), p. 953 | DOI:10.1007/978-0-387-30440-3_64
- Chaos and Ergodic Theory, Ergodic Theory (2009), p. 633 | DOI:10.1007/978-1-0716-2388-6_64
Cité par 36 documents. Sources : Crossref