@article{AIHPC_2009__26_6_2137_0, author = {Demyanov, A.}, title = {Quasistatic {Evolution} in the {Theory} of {Perfect} {Elasto-Plastic} {Plates.} {Part} {II} : {Regularity} of {Bending} {Moments}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2137--2163}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.01.006}, mrnumber = {2569889}, zbl = {1177.74235}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.006/} }
TY - JOUR AU - Demyanov, A. TI - Quasistatic Evolution in the Theory of Perfect Elasto-Plastic Plates. Part II : Regularity of Bending Moments JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2137 EP - 2163 VL - 26 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.006/ DO - 10.1016/j.anihpc.2009.01.006 LA - en ID - AIHPC_2009__26_6_2137_0 ER -
%0 Journal Article %A Demyanov, A. %T Quasistatic Evolution in the Theory of Perfect Elasto-Plastic Plates. Part II : Regularity of Bending Moments %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2137-2163 %V 26 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.006/ %R 10.1016/j.anihpc.2009.01.006 %G en %F AIHPC_2009__26_6_2137_0
Demyanov, A. Quasistatic Evolution in the Theory of Perfect Elasto-Plastic Plates. Part II : Regularity of Bending Moments. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2137-2163. doi : 10.1016/j.anihpc.2009.01.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.006/
[1] On the Extremal Stress and Displacement in Hencky Plasticity, Duke Math. J. 51 (1984) 133-147. | MR | Zbl
,[2] Asymptotic Behaviour of the Time-Dependent Norton-Hoff Law in Plasticity Theory and Regularity, Comment. Math. Univ. Carolinae 37 (2) (1996) 285-304. | MR | Zbl
, ,[3] Quasistatic Evolution Problems for Pressure-Sensitive Plastic Materials, Milan J. Math. 75 (2007) 117-134. | MR
, , ,[4] Quasistatic Evolution Problems for Linearly Elastic-Perfectly Plastic Materials, Arch. Ration. Mech. Anal. 180 (2) (2006) 237-291. | MR | Zbl
, , ,[5] Compactness Theorems for Spaces of Functions With Bounded Derivatives and Applications to Limit Analysis Problems in Plasticity, Arch. Ration. Mech. Anal. 105 (1989) 123-161. | MR | Zbl
,[6] Regularity of Solutions in Prandtl-Reuss Perfect Plasticity, Calc. Var 34 (2009) 23-72. | MR | Zbl
,[7] Quasistatic Evolution in the Theory of Perfectly Elasto-Plastic Plates. Part I: Existence of a Weak Solution, Math. Models Meth. Appl. Sci. 19 (2) (2009) 229-256. | MR | Zbl
,[8] Variational Methods for Problems From Plasticity Theory and for Generalized Newtonian Fluids, Springer-Verlag, Berlin, 2000. | MR | Zbl
, ,[9] Global Regularity of the Elastic Fields of a Power-Law Model on Lipschitz Domains, Math. Meth. Appl. Sci 29 (2006) 1363-1391. | MR
,[10] Sobolev Spaces, Springer-Verlag, 1985. | Zbl
,[11] Analysis of Energetic Models for Rate-Independent Materials, in: Beijing, 2002, Proceedings of the International Congress of Mathematicians, vol. III, Higher Ed. Press, Beijing, 2002, pp. 817-828. | MR | Zbl
,[12] A Chain Rule Formula for the Composition of a Vector-Valued Function by a Piecewise Smooth Function, Boll. Un. Mat. Ital. Sez. B 6 (3) (2003) 581-595. | MR | Zbl
, ,[13] Remarks on Regularity Up to the Boundary for Solutions to Variational Problems in Plasticity Theory, J. Math. Sci. 93 (5) (1999) 779-783. | MR | Zbl
,[14] Two-Dimensional Variational Problems in Plasticity Theory, Izv. Math. 60 (1) (1996) 179-216. | MR | Zbl
,[15] On Regularity of Minimizers of Certain Variational Problems in Plasticity Theory, St. Petersburg Math. J. 4 (1993) 1257-1272. | MR | Zbl
,[16] Diferentiability Properties of Weak Solutions of Certain Variational Problems in the Theory of Perfect Elastoplastic Plates, Appl. Math. Optim. 28 (1993) 307-335. | MR | Zbl
,[17] On Differentiability Properties of the Stress-Tensor in the Coulomb-Mohr Theory of Plasticity, St. Petersburg Math. J. 4 (6) (1993) 1257-1272. | MR | Zbl
,[18] Differential Properties of Solution of Evolution Variational Inequalities in the Theory of Plasticity, J. Math. Sci 72 (6) (1994) 3449-3458. | MR
,[19] Differentiability of Local Extremals of Variational Problems in the Mechanics of Perfect Elastoplastic Media, Differ. Uravn. 23 (11) (1987) 1981-1991, (in Russian). English translation:, Differential Equations 23 (1987) 1349-1358. | MR | Zbl
,[20] G.A. Seregin, Private communications.
[21] Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985, Translation of, Problèmes mathématiques en plasticité, Gauthier-Villars, Paris, 1983. | MR
,Cité par Sources :