Let be a mapping of finite distortion, where . Assume that the distortion function satisfies for some . We establish optimal regularity and area distortion estimates for f. In particular, we prove that for every . This answers positively, in dimension , the well-known conjectures of Iwaniec and Sbordone [T. Iwaniec, C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 519–572, Conjecture 1.1] and of Iwaniec, Koskela and Martin [T. Iwaniec, P. Koskela, G. Martin, Mappings of BMO-distortion and Beltrami-type operators, J. Anal. Math. 88 (2002) 337–381, Conjecture 7.1].
@article{AIHPC_2010__27_1_1_0, author = {Astala, Kari and Gill, James T. and Rohde, Steffen and Saksman, Eero}, title = {Optimal regularity for planar mappings of finite distortion}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1--19}, publisher = {Elsevier}, volume = {27}, number = {1}, year = {2010}, doi = {10.1016/j.anihpc.2009.01.012}, zbl = {1191.30007}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.012/} }
TY - JOUR AU - Astala, Kari AU - Gill, James T. AU - Rohde, Steffen AU - Saksman, Eero TI - Optimal regularity for planar mappings of finite distortion JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1 EP - 19 VL - 27 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.012/ DO - 10.1016/j.anihpc.2009.01.012 LA - en ID - AIHPC_2010__27_1_1_0 ER -
%0 Journal Article %A Astala, Kari %A Gill, James T. %A Rohde, Steffen %A Saksman, Eero %T Optimal regularity for planar mappings of finite distortion %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1-19 %V 27 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.012/ %R 10.1016/j.anihpc.2009.01.012 %G en %F AIHPC_2010__27_1_1_0
Astala, Kari; Gill, James T.; Rohde, Steffen; Saksman, Eero. Optimal regularity for planar mappings of finite distortion. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 1, pp. 1-19. doi : 10.1016/j.anihpc.2009.01.012. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.01.012/
[1] Lectures on Quasiconformal Mappings, Van Nostrand, Princeton (1966), Amer. Math. Soc. (2006) | Zbl
,[2] Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60 | Zbl
,[3] Mappings of BMO-bounded distortion, Math. Ann. 317 (2000), 703-726 | Zbl
, , , ,[4] Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser. vol. 48, Princeton Univ. Press (2009) | Zbl
, , ,[5] Beltrami operators in the plane, Duke Math. J. 107 (2001), 27-56 | Zbl
, , ,[6] Composites and quasiconformal mappings: New optimal bounds in two dimensions, Calc. Var. Partial Differential Equations 18 (2003), 335-355 | Zbl
, ,[7] Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988), 346-364 | Zbl
,[8] Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR 102 (1955), 661-664
,[9] On solutions of the Beltrami equation, J. Anal. Math. 76 (1998), 67-92 | Zbl
, ,[10] Solutions de l'equation de Beltrami avec , Ann. Acad. Sci. Fenn. Ser. AI Math. 13 (1988), 25-70 | Zbl
,[11] Univalent Functions, Springer-Verlag (1983) | Zbl
,[12] Mappings of finite distortion: The degree of regularity, Adv. Math. 190 (2005), 300-318 | Zbl
, , ,[13] On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. Ser. AI Math. 272 (1959) | Zbl
, ,[14] Geometric Function Theory and Nonlinear Analysis, Oxford Univ. Press (2001)
, ,[15] The Beltrami equation, Mem. Amer. Math. Soc. 191 (2008)
, ,[16] Mappings of BMO-distortion and Beltrami-type operators, J. Anal. Math. 88 (2002), 337-381 | Zbl
, , ,[17] Mappings of finite distortion: -integrability, J. London Math. Soc. (2) 67 (2003), 123-136 | Zbl
, , , ,[18] Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 519-572 | EuDML | Numdam | Zbl
, ,[19] On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181-188 | Zbl
, ,[20] Homeomorphisms with a given dilatation, Proceedings of the Fifteenth Scandinavian Congress, Oslo, 1968, Lecture Notes in Math. vol. 118, Springer-Verlag (1970), 58-73 | Zbl
,[21] Quasiconformal Mappings in the Plane, Springer-Verlag (1973) | Zbl
, ,[22] Lusin's condition (N) and mappings of the class , J. Reine Angew. Math. 458 (1995), 19-36 | EuDML | Zbl
, ,[23] Compactness properties of μ-homeomorphisms, Ann. Acad. Sci. Math. 16 (1991), 47-69
,[24] BMO-quasiconformal mappings, J. Anal. Math. 83 (2001), 1-20 | Zbl
, , ,Cité par Sources :