@article{AIHPC_2009__26_4_1517_0, author = {El Dika, Khaled and Molinet, Luc}, title = {Stability of {Multipeakons}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1517--1532}, publisher = {Elsevier}, volume = {26}, number = {4}, year = {2009}, doi = {10.1016/j.anihpc.2009.02.002}, mrnumber = {2542735}, zbl = {1171.35459}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.002/} }
TY - JOUR AU - El Dika, Khaled AU - Molinet, Luc TI - Stability of Multipeakons JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1517 EP - 1532 VL - 26 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.002/ DO - 10.1016/j.anihpc.2009.02.002 LA - en ID - AIHPC_2009__26_4_1517_0 ER -
%0 Journal Article %A El Dika, Khaled %A Molinet, Luc %T Stability of Multipeakons %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1517-1532 %V 26 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.002/ %R 10.1016/j.anihpc.2009.02.002 %G en %F AIHPC_2009__26_4_1517_0
El Dika, Khaled; Molinet, Luc. Stability of Multipeakons. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 4, pp. 1517-1532. doi : 10.1016/j.anihpc.2009.02.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.002/
[1] Multipeakons and the Classical Moment Problem, Adv. Math. 154 (2) (2000) 229-257. | MR | Zbl
, , ,[2] The Stability of Solitary Waves, Proc. R. Soc. Lond. Ser. A 328 (1972) 153-183. | MR
,[3] Global Conservative Solutions of the Camassa-Holm Equation, Arch. Ration. Mech. Anal. 187 (2007) 215-239. | MR | Zbl
, ,[4] Global Dissipative Solutions of the Camassa-Holm Equation, J. Anal. Appl. 5 (2007) 1-27. | MR | Zbl
, ,[5] An Integrable Shallow Water Equation With Peaked Solitons, Phys. Rev. Lett. 71 (1993) 1661-1664. | MR | Zbl
, ,[6] An New Integrable Shallow Water Equation, Adv. Appl. Mech. 31 (1994). | Zbl
, , ,[7] On the Scattering Problem for the Camassa-Holm Equation, Proc. R. Soc. Lond. Ser. A 457 (2001) 953-970. | MR | Zbl
,[8] The Trajectories of Particles in Stolkes Waves, Invent. Math. 166 (2006) 523-535. | MR | Zbl
,[9] Particle Trajectories in Solitary Waves, Bull. Amer. Math. Soc. (N.S.) 44 (2007) 423-431. | MR | Zbl
, ,[10] Inverse Scattering Transform for the Camassa-Holm Equation, Inverse Problems 22 (2006) 2197-2207. | MR | Zbl
, , ,[11] Stability of Peakons, Comm. Pure Appl. Math. 53 (2000) 603-610. | MR | Zbl
, ,[12] Stability of the Camassa-Holm Solitons, J. Nonlinear Sci. 12 (2002) 415-422. | MR | Zbl
, ,[13] Global Weak Solutions for a Shallow Water Equation, Comm. Math. Phys. 211 (2000) 45-61. | MR | Zbl
, ,[14] Orbital Stability of Solitary Waves for a Shallow Water Equation, Phys. D 157 (2001) 75-89. | MR | Zbl
, ,[15] Model Equations for Nonlinear Dispersive Waves in Compressible Mooney-Rivlin Rod, Acta Mech. Sin. 127 (1998) 293-308. | MR | Zbl
,[16] A Few Remarks on the Camassa-Holm Equation, Differential Integral Equations 14 (2001) 953-980. | MR | Zbl
,[17] Smoothing Effect of the Generalized BBM Equation for Localized Solutions Moving to the Right, Discrete Contin. Dyn. Syst. 12 (2005) 973-982. | MR
,[18] Stability of N Solitary Waves for the Generalized BBM Equations, Dyn. Partial Differ. Equ. 1 (2004) 401-437. | MR | Zbl
, ,[19] Exponential Decay of -Localized Solutions and Stability of the Train of N Solitary Waves for the Camassa-Holm Equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365 (2007) 2313-2331. | MR | Zbl
, ,[20] Symplectic Structures, Their Bäcklund Transformation and Hereditary Symmetries, Phys. D 4 (1981) 47-66. | MR
, ,[21] Stability Theory of Solitary Waves in the Presence of Symmetry, J. Funct. Anal. 74 (1987) 160-197. | MR | Zbl
, , ,[22] A Convergent Numerical Scheme for the Camassa-Holm Equation Based on Multipeakons, Discrete Contin. Dyn. Syst. 14 (3) (2006) 505-523. | MR | Zbl
, ,[23] Camassa-Holm, Korteweg-De Vries and Related Models for Water Waves, J. Fluid Mech. 455 (2002) 63-82. | MR | Zbl
,[24] Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical GKdV Equations, Comm. Math. Phys. 231 (2002) 347-373. | MR | Zbl
, , ,[25] Stability in of the Sum of K Solitary Waves for Some Nonlinear Schrödinger Equations, Duke Math. J. 133 (3) (2006) 405-466. | MR | Zbl
, , ,[26] On Well-Posedness Results for Camassa-Holm Equation on the Line: a Survey, J. Nonlinear Math. Phys. 11 (2004) 521-533. | MR | Zbl
,Cité par Sources :