@article{AIHPC_2009__26_3_1021_0, author = {Nolen, James and Ryzhik, Lenya}, title = {Traveling {Waves} in a {One-Dimensional} {Heterogeneous} {Medium}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1021--1047}, publisher = {Elsevier}, volume = {26}, number = {3}, year = {2009}, doi = {10.1016/j.anihpc.2009.02.003}, mrnumber = {2526414}, zbl = {1178.35205}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.003/} }
TY - JOUR AU - Nolen, James AU - Ryzhik, Lenya TI - Traveling Waves in a One-Dimensional Heterogeneous Medium JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1021 EP - 1047 VL - 26 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.003/ DO - 10.1016/j.anihpc.2009.02.003 LA - en ID - AIHPC_2009__26_3_1021_0 ER -
%0 Journal Article %A Nolen, James %A Ryzhik, Lenya %T Traveling Waves in a One-Dimensional Heterogeneous Medium %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1021-1047 %V 26 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.003/ %R 10.1016/j.anihpc.2009.02.003 %G en %F AIHPC_2009__26_3_1021_0
Nolen, James; Ryzhik, Lenya. Traveling Waves in a One-Dimensional Heterogeneous Medium. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 3, pp. 1021-1047. doi : 10.1016/j.anihpc.2009.02.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.02.003/
[1] The Zero Set of a Solution of a Parabolic Equation, J. Reine Angew. Math. 390 (1988) 79-96. | MR | Zbl
,[2] Fronts in Periodic Excitable Media, Comm. Pure Appl. Math. 60 (2002) 949-1032. | MR | Zbl
, ,[3] Fronts and Invasions in General Domains, C. R. Acad. Sci. Paris Ser. I 343 (2006) 711-716. | MR | Zbl
, ,[4] Generalized Travelling Waves for Reaction-Diffusion Equations, in: Perspectives in Nonlinear Partial Differential Equations. in Honor of H. Brezis, Contemp. Math., vol. 46, Amer. Math. Soc., 2007, pp. 101-123. | MR
, ,[5] On the Method of Moving Planes and the Sliding Method, Bull. Braz. Math. Soc. (N.S.) 22 (1991) 1-37. | MR | Zbl
, ,[6] The Approach of Solutions of Nonlinear Diffusion Equations by Traveling Front Solutions, Arch. Ration. Mech. Anal. 65 (1977) 335-361. | MR | Zbl
, ,[7] On the Propagation of Concentration Waves in Periodic and Random Media, Soviet Math. Dokl. 20 (1979) 1282-1286. | MR | Zbl
, ,[8] Functional Integration and Partial Differential Equations, Ann. of Math. Stud., vol. 109, Princeton Univ. Press, Princeton, NJ, 1985. | MR | Zbl
,[9] Limit Theorems for Large Deviations and Reaction-Diffusion Equations, Ann. Probab. 13 (1985) 639-675. | MR | Zbl
,[10] Geometric Optics Approach to Reaction-Diffusion Equations, SIAM J. Appl. Math. 46 (1986) 222-232. | MR | Zbl
,[11] Reaction-Diffusion in Incompressible Fluid: Asymptotic Problems, J. Differential Equations 179 (2002) 44-96. | MR | Zbl
,[12] Entire Solutions of the KPP Equation, Comm. Pure Appl. Math. 52 (1999) 1255-1276. | MR | Zbl
, ,[13] Travelling Fronts and Entire Solutions of the Fisher-KPP Equation in , Arch. Ration. Mech. Anal. 157 (2001) 91-163. | MR | Zbl
, ,[14] Stabilization of Solutions of the Cauchy Problem for Equations Encountered in Combustion Theory, Mat. Sb. 59 (1962) 245-288. | MR
,[15] Stochastic Homogenization of Hamilton-Jacobi-Bellman Equations, Comm. Pure Appl. Math. 59 (2006) 1489-1521. | MR | Zbl
, , ,[16] A Property of the Solutions of Parabolic Equations With Measureable Coefficients, (English translation), Izv. Akad. Nauk SSSR Ser. Mat. 16 (1) (1981) 151-164. | MR | Zbl
, ,[17] Wave-Block in Excitable Media Due to Regions of Depressed Excitability, SIAM J. Appl. Math. 61 (2000) 293-316. | MR | Zbl
, ,[18] An Improved Subadditive Ergodic Theorem, Ann. Probab. 13 (1985) 1279-1285. | Zbl
,[19] Homogenization of “viscous” Hamilton-Jacobi Equations in Stationary Ergodic Media, Comm. Partial Differential Equations 30 (2005) 335-375. | Zbl
, ,[20] Large Scale Front Dynamics for Turbulent Reaction-Diffusion Equations With Separated Velocity Scales, Nonlinearity 7 (1994) 1-30. | Zbl
, ,[21] A Parabolic Equation of the KPP Type in Higher Dimensions, SIAM J. Math. Anal. 26 (1995) 1-20. | Zbl
, ,[22] H. Matano, talks presented at various conferences.
[23] A. Mellet, J.-M. Roquejoffre, Y. Sire, Generalized fronts for one-dimensional reaction-diffusion equations, preprint, 2008. | MR | Zbl
[24] Variational Principle of KPP Front Speeds in Temporally Random Shear Flows With Applications, Comm. Math. Phys. 269 (2007) 493-532. | MR | Zbl
, ,[25] J. Nolen, J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows, Ann. Inst. H. Poincaré Anal. Non Linéaire (2008), in press, 10.1016/j.anihpc.2008.02.005. | Numdam | MR | Zbl
[26] Eventual Monotonicity and Convergence to Traveling Fronts for the Solutions of Parabolic Equations in Cylinders, Ann. Inst. H. Poincaré 14 (4) (1997) 499-552. | Numdam | MR | Zbl
,[27] Traveling Waves in Diffusive Random Media, J. Dynam. Differential Equations 16 (4) (2004) 1011-1060. | MR | Zbl
,[28] On Spreading Speeds and Traveling Waves for Growth and Migration Models in a Periodic Habitat, J. Math. Biol. 45 (2002) 511-548. | MR | Zbl
,[29] Existence of Planar Flame Fronts in Convective-Diffusive Periodic Media, Arch. Ration. Mech. Anal. 121 (1992) 205-233. | MR | Zbl
,[30] Existence and Nonexistence of Traveling Waves and Reaction-Diffusion Front Propagation in Periodic Media, J. Stat. Phys. 73 (1993) 893-926. | MR | Zbl
,Cité par Sources :